Quantile estimator

Read in simulated data with different outcome-exposure relationships; y# outcome, x exposure, g instrumental variable (genotype).

use ../data/ivmwdata, clear

Plot outcome-exposure relationships

twoway line y1 x, sort(x)

Plot of relationship between y1 and x.

twoway line y2 y3 y4 x, sort(x) legend(pos(6) rows(1))

Plot of relationships between y2, y3, y4, and x.

twoway line y5 x, sort(x)

Plot of relationship between y5 and x.

Use with different iv commands.

ivxtile, nq(5) par(x): ivregress 2sls y2 (x = g)
qui gr export ./img/ivxtile-plot-01.svg, replace
    quantile       beta         se   medendog      lowci      uppci  
           1   .1311195   .0015519   .6070275   .1280778   .1341611  
           2   .2131875   .0009425   .9969859   .2113403   .2150348  
           3   .2827527    .001016   1.343214   .2807613   .2847441  
           4   .3815383   .0015779   1.825639   .3784456    .384631  
           5   .6742788    .054497   2.897407   .5674646   .7810929  

Plot of estimated causal effect versus median of exposure in quantile.

ivxtile, nq(10) par(b1): ivtsps y2 (x = g)
qui gr export ./img/ivxtile-plot-02.svg, replace
    quantile       beta         se   medendog      lowci      uppci  
           1   .1037679   .0021337   .4384223   .0995859   .1079499  
           2   .1585745   .0015963   .7513582   .1554457   .1617032  
           3   .1981476   .0015735   .9798349   .1950635   .2012317  
           4   .2285919   .0015923   1.016022    .225471   .2317128  
           5    .263626   .0014932   1.178039   .2606993   .2665527  
           6   .3018492   .0016141   1.401061   .2986855   .3050129  
           7   .3490515   .0019169   1.642947   .3452945   .3528085  
           8   .4143449   .0022951   1.994051   .4098466   .4188433  
           9   .5128626   .0030473   2.466335   .5068899   .5188352  
          10   .8345693   .0691984   3.577371   .6989404   .9701982  

Plot of estimated causal effect versus median of exposure in quantile.

Some binary outcome examples.

use ../data/ivbinoutdata, clear
ivxtile, nq(5) par(b1): ivtsps y (x = z1 z2 z3), link(logadd)
qui gr export ./img/ivxtile-plot-03.svg, replace
    quantile       beta         se    medendog      lowci      uppci  
           1   .8962642   .0908862   -.5241845   .7181272   1.074401  
           2   .5585964   .0441663    .8047578   .4720304   .6451625  
           3   .3532819   .0297168    1.851269   .2950371   .4115268  
           4   .1504481   .0224022    2.627049   .1065397   .1943565  
           5   .0427768   .0098807    4.113728   .0234107    .062143  

Plot of estimated causal effect versus median of exposure in quantile.

ivxtile, nq(5) par(b1): ivtsps y (x = z1 z2 z3), link(logmult)
ivxtile, nq(5) par(b1): ivtsps y (x = z1 z2 z3), link(logit)
ivxtile, nq(5) par(b1): ivtsri y (x = z1 z2 z3), link(logadd)
ivxtile, nq(5) par(b1): ivtsri y (x = z1 z2 z3), link(logmult)
ivxtile, nq(5) par(b1): ivtsri y (x = z1 z2 z3), link(logit)
ivxtile, nq(5) par(x): ivlsmm y (x = z1 z2 z3)
ivxtile, nq(5) par(x): ivmsmm y (x = z1 z2 z3)

Save the dataset of results.

ivxtile, nq(10) par(x) saving(ivxtileres): ivreg2 y2 (x = g)