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Extensions to Mendelian randomization

Thomas Michael Palmer

The Mendelian randomization approach is concerned with the causal pathway between a
gene, an intermediate phenotype and a disease. The aim of the approach is to estimate
the causal association between the phenotype and the disease when confounding or reverse
causation may affect the direct estimate of this association. The approach represents the
use of genes as instrumental variables in epidemiological research and is justified through
Mendel’s second law.

Instrumental variable analysis was developed in econometrics as an alternative to regres-
sion analyses affected by confounding and reverse causation. Methods such as two-stage
least squares are appropriate for instrumental variable analyses where the phenotype and
disease are continuous. However, case-control and cohort studies typically report binary
outcomes and instrumental variable methods for these studies are less well developed.

For a binary outcome study three estimators of the phenotype-disease log odds ratio
are compared. An adjusted instrumental variable estimator is shown to have the least
bias compared with the other two estimators. However, significance tests of the adjusted
estimator are shown to have an inflated type I error rate, so the standard estimator, which
had the correct type I error rate, could be used for testing.

A single study may not have adequate statistical power to detect a causal association in a
Mendelian randomization analysis. Meta-analysis models that extend existing approaches
are investigated. The ratio of coefficients approach is applied within the meta-analysis
models and a Taylor series approximation is used to investigate its finite sample bias.

The increasing awareness of the Mendelian randomization approach has made researchers
aware of the need for instrumental variable methods appropriate for epidemiological study
designs. The work in this thesis viewed in the context of the research into instrumental
variable analysis in other areas of biostatistics such as non-compliance in clinical trials
and other subject areas such as econometrics and causal inference contributes to the
development of methods for Mendelian randomization analyses.
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Chapter 1

Introduction

1.1 Aims

The aim of this thesis is to investigate statistical aspects of the application of the Mendelian

randomization approach in epidemiology. The Mendelian randomization approach is con-

cerned with the causal pathway including a gene, an intermediate phenotype and a disease.

For example, Minelli et al. (2004) examined the pathway involving polymorphisms of the

MTHFR gene, homocysteine (the intermediate phenotype) and coronary heart disease.

The aim of a Mendelian randomization analysis is to estimate the association between

the intermediate phenotype and the disease in a way that is robust to the possible pres-

ence of confounding or reverse causation. As such the approach now represents the use of

subject’s genotypes as an instrumental variable (IV) in order to estimate this association

between the intermediate phenotype and the disease. The idea behind the Mendelian ran-

domization approach has been around for about twenty years. However, it is only since

the growth of the field of genetic epidemiology that the approach has been implemented

in applied studies.

Instrumental variable analysis has largely been developed in the fields of econometrics and

causal inference and there are a number of statistical models for such analyses. The appli-
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Chapter 1. Introduction

cation of instrumental variable analysis to epidemiological studies presents some specific

problems. Hence, there is a need to evaluate existing and novel statistical methods for in-

strumental variable analyses appropriate for epidemiological study designs. Additionally,

the practice of performing a meta-analysis is now common in epidemiological research in

order to increase the statistical power of an analysis. Therefore, the investigation of meta-

analysis models implementing the Mendelian randomization approach is also particularly

relevant.

1.2 Background & motivation

One of the aims of epidemiological research is to identify modifiable causes of common

diseases of public health interest. Typically, epidemiological studies are observational and

differ from randomized controlled trials in that subjects are not randomly allocated to

each phenotype group at the start of the study. Such studies have merit because often

they are the only ethical or practical way to assess a research question concerning human

health. For a reported association from an observational study to be considered robust it

should be replicated in other similar studies and preferably corroborated by findings from

other types of studies such as randomized controlled trials (RCTs).

There have been notable epidemiological findings which have been successfully replicated

such as the well known association between smoking and lung cancer (Doll & Hill, 1952).

However, there have also been findings which have not been confirmed in randomized

controlled trials or other studies. One example is the finding that hormone replacement

therapy was protective for cardiovascular disease (Lawlor et al., 2004; Rossouw et al.,

2002). Such spurious findings in observational research are most likely caused by con-

founding by social, behavioural or physiological factors which are difficult to control for,

or indeed to measure accurately. In econometrics, the branch of economics concerned with

statistical analysis, and causal inference instrumental variable analysis has been proposed

as a method to overcome some of these potential problems.

2
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The Mendelian randomization approach was proposed by Katan (1986) who wanted to

determine the association between low cholesterol and the risk of cancer. In particular

Katan was concerned whether reported associations between low cholesterol and cancer

were causal (Keys et al., 1985; McMichael et al., 1984). Katan’s idea was to investigate

the distribution of the apolipoprotein E (apo E) genotypes within cases and controls, since

apo E has a role in the clearance of cholesterol from blood plasma. Katan hypothesised

that if the association between cholesterol and cancer was causal then the E-2 allele should

be more common amongst cases. Davey Smith & Ebrahim (2003) restarted interest in the

Mendelian randomization approach and then Thomas & Conti (2004) noted that Katan’s

idea allowed the use of genetic polymorphisms as instrumental variables.

1.3 Epidemiological and genetic concepts

1.3.1 Epidemiological concepts

A basic definition of a confounder is a variable which affects both the phenotype variable,

X, and the outcome variable, Y , but is not itself affected by either of these variables

(Rothman et al., 2008). Failing to adjust for a confounder in the estimation of the asso-

ciation between the phenotype and the outcome will typically result in a biased estimate.

A variable thought to be a confounder should not lie on the causal path between X and

Y , since adjustment for such a variable could bias the estimated association between X

and Y , which is sometimes referred to as collider bias (Weinberg, 1993).

Adjustment for confounding variables can be performed in a number of ways. One method

is to include the potential confounder, along with the phenotype of interest, in the linear

predictor of a generalised linear model (GLM). This approach to controlling for confound-

ing views the confounding in terms of explained variation, since the confounder captures

some of the variation in the outcome also explained by the phenotype. There is a close

analogy with the fact that analysis of variance and covariance can be performed within

the GLM framework. A method to adjust for confounding in case-control studies is the

3



Chapter 1. Introduction

Mantel-Haentzel odds ratio (Mantel & Haenszel, 1959) which relies upon stratifying by

levels of the confounder.

The collapsibility or noncollapsibility of various different measures of risk such as risk dif-

ferences, relative risks and odds ratios is also relevant when discussing confounding. It has

been commented that, “much of the statistics literature does not distinguish between the

concept of confounding as a bias in effect estimation and the concept of noncollapsibility”

(Greenland et al., 1999b). Collapsibility refers to the property of a measure of associa-

tion that is constant across the strata of another variable and the observation that the

odds ratio can be non-collapsible is due to Miettinen & Cook (1981). GLMs with identity

or log-links are generally said to be collapsible whereas those with logit links for binary

outcomes are said to be noncollapsible (Wermuth, 1987).

The following Table 1.1 demonstrates the concept of collapsibility which is adapted from

Jewell (2003, Table 8.6). On the right hand side is the pooled 2 × 2 table of results for

a study. In the table the variable D represents disease status, being diseased (D) or not

diseased (D) and the variable E represents a phenotype, subjects are either exposed (E)

or unexposed (E). This data is also presented stratified by a third variable C with two

levels C and C. The relative risk (RR) and odds ratio (OR) for each of the tables is also

given.

C C Pooled

D D D D D D

E 120 280 14 86 134 366

E 60 340 7 93 67 433

RR = 2.00 RR = 2.00 RR = 2.00
OR = 2.43 OR = 2.16 OR = 2.37

Table 1.1: Collapsibility of the relative risk and the non-collapsibility of the odds ratio.

In Table 1.1 variable C is not a confounder since the relative risk in the pooled data is

the same as in each stratum of C. However, despite that C is not a confounder the odds

ratio has different values in the pooled table and each stratum of C. It is this difference

in the odds ratio in the strata of a variable which does not affect disease status which is

4
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referred to as the non-collapsibility of the odds ratio. Greenland et al. (1989, Table 1) is

an example where the odds ratio is collapsible across strata but where the relative risk are

not indicating the presence of confounding.

Another important epidemiological concept is reverse causation, which refers to the situ-

ation where an individual’s disease status affects the levels of the phenotype. This phe-

nomenon can therefore bias the estimated association between the phenotype and the

disease. Reverse causation is a design issue in retrospective studies such as case-control

studies.

1.3.2 Basic introduction to genetic terminology

Human genetic information is encoded in genes which are located on chromosomes made

up of DNA (Deoxyribonucleic acid). There are 23 pairs of chromosomes in the human

genome consisting of 22 pairs of autosomes and 1 pair of sex chromosomes. Somatic

cells have two copies of each of the autosomes and two sex chromosomes. There are

approximately 3 × 109 DNA base pairs in the human genome and the loci where DNA

varies between individuals are termed polymorphic. Traditionally, a single nucleotide

polymorphism (SNP) is defined as a polymorphism at a single base that occurs with a

minor allele frequency of 1%, although with advances in bioinformatics database such

as dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP) now include SNPs that have

lower allele frequencies than 1%. There are estimated to be between 3× 106 and 10× 106

SNPs and approximately 30,000 genes in the human genome (Day et al., 2001). At a

genetic locus individuals with two copies of the same allele are called homozygous, while

individuals with two different alleles at a locus are called heterozygous.

The obvious effects of genetic variation are seen in Mendelian disorders, in which a disease

is attributable to a genetic mutation. The genetic model or mode of inheritance determines

the way that a trait (or disease) is expressed with respect to the genotype. Mendelian

traits are described as dominant when one copy of the mutant (risk) allele is sufficient to

cause the disease, hence in this instance the disease is present in heterozygotes. Traits are

5
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described as recessive if the disease is present in only those individuals with two copies of

the risk allele. Traits can also be inherited as co-dominant, which describes a relationship

where the phenotypes caused by each allele both manifest themselves when both alleles

are present. The additive genetic model is a special case of co-dominance and assumes

that there is an equal increase in the risk of disease per copy of the risk allele.

Assuming the common allele is denoted g and the risk allele G, there are three possible

genotypes; the common homozygotes gg, the heterozygotes Gg and the rare homozygotes

GG. Hardy-Weinberg equilibrium (Hardy, 1908) states that if the risk allele has frequency

q then the frequencies of the three genotypes should be; (1− q)2, 2q(1− q) and q2 respec-

tively.

Apart from Mendelian traits genetic polymorphisms can affect the risk of more complex

diseases. These diseases are considered to be complex because the genetic factor is only one

among many factors that could possibly affect the risk of disease. Indeed there may even

be many genetic factors that contribute to the risk of disease and these genetic factors may

contribute in different ways. For example, these genes may act in combinations of additive,

multiplicative and epistatic ways. An additive effect means each gene contributes equally

in explaining the risk of disease, a multiplicative effect means that the presence of two

factors increases the risk of disease by more than two times the risk associated with the first

factor. An epistatic interaction means that one gene must be present in a particular form

for a second gene to have an effect. Therefore, complex diseases often do not have clear

patterns of inheritance and common diseases of public health relevance often have complex

patterns of inheritance. It is these diseases and their respective gene-disease associations

which are of particular interest in large scale genetic association studies, such as the

seven diseases (bipolar disorder, coronary artery disease, Crohn’s disease, hypertension,

rheumatoid arthritis, type I diabetes, type II diabetes) studied in The Wellcome Trust

Case Control Consortium (2007).

A phenotype is an observable characteristic of an organism such as a biochemical or

physical property. Phenotypes are commonly affected by both genetic and environmental
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factors and cover a very diverse range of examples including; blood group, level of C-

reactive protein in the blood plasma and bone mineral density.

There are two main types of genetic epidemiological study, linkage and association analy-

ses. Mendelian randomization analyses use genetic association analyses. Genetic associa-

tion studies more closely resemble traditional epidemiological studies in which individuals

with and without the disease of interest are compared in order to assess the relative im-

portance of a proposed genetic risk factor. A genetic association is inferred if the allele

or genotype of interest is more frequent than would be expected by chance in a group of

affected individuals than in a group of non-affected individuals.

Some additional genetic terminology is defined in Appendix A. The following section

describes Mendel’s laws, of which the second law provides the basis for the Mendelian

randomization approach.

1.4 Mendel’s laws

In 1865 Gregor Mendel (1822–1884) published experiments investigating the properties of

heredity (Mendel, 1865). Mendel studied a number of heritable traits in peas including

seed colour. Mendel was particularly interested in traits that were inherited randomly

(half from each parent) and from these experiments he postulated the existence of what

are now known as genes (Speed & Zhao, 2007). Mendel’s work has come to be known as

the two laws of inheritance; the law of segregation and the law of independent assortment.

1.4.1 The law of segregation

The law of segregation, also known as Mendel’s first law, was derived from observing how

two gene variants controlled seed colour and how this trait was inherited. The law of

segregation has three parts:

(i) The concept of alleles; different versions of genes, made up of alleles, account for
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variations in inherited characteristics.

(ii) For each characteristic an individual inherits two alleles, one from each parent.

(iii) The two alleles for each characteristic segregate at gamete production.

1.4.2 The law of independent assortment

The law of independent assortment, also known as the ‘inheritance law’ or Mendel’s second

law, was derived from observing how gene-pairs for seed shape and colour were jointly

inherited. The law of independent assortment states that during gamete formation the

segregation of one gene-pair is independent of other gene-pairs. When two gene-pairs

segregate each haploid gamete is equally likely to have each of the possible combinations

of genotypes (Speed & Zhao, 2007). This means that the inheritance pattern of one trait

will not affect the inheritance pattern of another, to quote Mendel (1865),

the behaviour of each pair of differentiating characteristics in hybrid union

is independent of the other differences between the two original plants, and,

further, the hybrid produces just so many kinds of egg and pollen cells as there

are possible constant combination forms.

Mendel’s second law implies that for a given genetic polymorphism individuals are ran-

domized to a particular genotype because each allele is inherited at random from each

parent (Wijsman, 2002). It has been argued that this process is akin to that of a ran-

domization process such as would be implemented in a randomized controlled clinical

trial (Davey Smith & Ebrahim, 2003). The consequence of this randomization is that the

individual’s genotype for a given polymorphism is assigned independently of other fac-

tors. Therefore, at the population level the distribution of genotypes will be independent

of the distribution of the possible confounders and, since this mirrors the conditions for

an instrumental variable, a genotype can therefore be suitable candidates for use as an

instrumental variable.
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Importantly, the discovery that some loci are more likely to be inherited together, which

can be true even loci which are separated by large genetic distances on chromosomes,

is expressed in the concept of linkage disequilibrium. Hence, Mendel’s second law only

applies to loci in linkage equilibrium. On its own Mendel’s second law is not sufficient

to allow the use of genes as instrumental variables and ensure the validity of Mendelian

randomization analyses, other conditions are also required which are discussed throughout

this thesis.

1.5 Statistical methods

This section introduces the concepts underlying the statistical methods discussed in this

thesis, including; instrumental variable analysis, weak instruments, directed acyclic graphs

(DAGs) and meta-analysis models.

Instrumental variable analysis was proposed and has largely been developed within econo-

metrics. Instrumental variable analysis has also received attention in causal inference

because of its ability to draw causal inferences in certain circumstances. Taking the exam-

ple of linear regression, the aim of an instrumental variable analysis is to overcome the bias

in ordinary least squares parameter estimates caused by the inclusion of covariates which

are correlated with the error terms. This correlation between the covariate and the error

term violates an assumption of linear regression analysis and is known in econometrics as

endogeneity. Arguably endogeneity could be caused by confounding and reverse causality.

In causal inference graphs have been used to represent causal links between variables

(Greenland et al., 1999a). In a graph any line or arrow connecting two variables is called

an arc or an edge. Two variables in a graph are adjacent if they are connected by an

edge. Single headed arrows represent direct links from causes to effects and points on the

graph representing variables are called nodes or vertices. A path through a graph is any

unbroken route traced out along or against arrows connecting adjacent nodes. A directed

path from one node to another is one that can be traced through a sequence of single
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headed arrows, such a path can also be called a causal path.

A variable X is said to be a cause of another variable Y if there is a directed path of

arrows leading out of X into Y , in which case Y is said to be a descendant of X. X is

said to be a parent of Y if there is a single headed arrow from X to Y , in which case Y is

a child of X. A two-headed arrow connecting two variables in a graph is used to indicate

that two variables share one or more ancestors, i.e. they have a common cause. A graph

is directed if all edges between variables have either a single or double-headed arrow. A

graph is acyclic (or recursive) if no directed path in the graph forms a closed loop. If a

graph satisfies both of these conditions it is a directed acyclic graph (DAG).

Figure 1.1 shows the assumed relationships between the genotype, phenotype, confounder

and disease in a Mendelian randomization analysis.

Confounder

Genotype Phenotype Disease

�������

HHHHHHj
- -

Figure 1.1: The relationship between the variables in a Mendelian randomization analysis.

For a variable to be used or to qualify as an instrumental variable it should fulfill cer-

tain conditions which are expressed in Figure 1.1 when this figure is interpreted as a

DAG. These ‘core’ conditions for Mendelian randomization are (Didelez & Sheehan, 2007b;

Lawlor et al., 2008d):

(i) The genotype should be associated with the phenotype of interest.

(ii) The genotype should be independent of confounding factors that confound the asso-

ciation between the phenotype and the disease.

(iii) The genotype should be independent of the disease given the phenotype and the

confounding factors.

An additional condition for the analysis to have a causal interpretation is that:
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(iv) All of the associations are linear and unaffected by statistical interactions.

The other implication of Figure 1.1 is that if the gene-disease association is non-significant

then the phenotype-disease causal association will also be non-significant (Sheehan et al.,

2008).

In econometrics there are several methods for instrumental variable analysis that produce

equivalent estimates when all the relationships between the variables are linear without

interactions. Two such methods are known as the two-stage least squares and the ratio

of coefficients approaches (Greene, 1999; Stewart & Gill, 1998). Two-stage least squares

involves two linear regressions; the first of the phenotype on the instrument which produces

predicted values of the phenotype. In the second stage the disease outcome variable is

regressed on the predicted values of the phenotype. The ratio of coefficients approach first

estimates the associations between the gene and the disease and between the gene and the

phenotype. The instrumental variable estimate of the association between the phenotype

and the disease is then given by the ratio of these estimates.

An important concept in instrumental variable analyses is whether a chosen instrumental

variable is a ‘weak’ instrument. A weak instrument is loosely defined as an instrument

which produces an F -statistic less than 10 in the first stage regression of the phenotype on

the genotype (Lawlor et al., 2008d). Weak instruments were first discussed in econometrics

by Bound et al. (1995) and if the chosen instrument is ‘weak’ this can cause bias in the IV

estimate of the association between phenotype and the disease (Staiger & Stock, 1997).

There are some differences in the terminology used in statistics and econometrics that re-

lates to instrumental variable analysis. In econometrics a variable is said to be exogenous

in a linear regression if it is not correlated with error term (Wooldridge, 2002, p 50). For

instrumental variable estimation econometricians sometimes say that exogenous variables

act as their own instruments since they are unrelated to instrumental variables. In econo-

metrics an endogenous variable is a variable which is correlated with the error term in a

linear regression. The presence of such endogenous variables will bias the ordinary least

squares parameter estimates and instrumental variable analysis was proposed as a method
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to overcome the problem of endogenous variables (Wooldridge, 2002, p 50).

Meta-analysis is now common in epidemiology and aims to provide a quantitative summary

of the evidence on a particular research question (Sutton et al., 2000). The meta-analysis

of genetic association studies is becoming more common since the instigation of HuGE

reviews through the Human Genetic Epidemiology Network (HuGENet) (Ioannidis et al.,

2006; Little & Higgins, 2006). Meta-analyses of genetic association studies are potentially

very powerful (Kavvoura & Ioannidis, 2008). However, these meta-analyses face some of

the same difficulties as meta-analyses of epidemiological studies and clinical trials such as;

publication bias, between study heterogeneity and varying baseline risk. Meta-analyses

of genetic association studies also face specific limitations including the assessment of

Hardy-Weinberg equilibrium within each study (Thompson et al., 2008).

1.6 Outline of thesis

The outline of this thesis is as follows; Chapter 2 is a review of the literature relating to

the Mendelian randomization approach. The literature review covers relevant methodology

and the application of the Mendelian randomization approach within epidemiology.

Chapters 3 and 4 are concerned with the application of Mendelian randomization analysis

to a study with a binary outcome. Three estimators of the phenotype-disease log odds

ratio and their theoretical properties are considered in Chapter 3 which are investigated

through simulations in Chapter 4. Appendix B discusses related theory for some of the

other commonly used generalized linear models. Appendix C presents simulation results

for some of these other GLMs.

Chapters 5 considers meta-analysis models for Mendelian randomization studies. This

work builds on previously proposed multivariate meta-analysis models. Chapter 6 uses a

Taylor series approximation to investigate the finite sample bias in the ratio of coefficients

approach.
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Chapter 7 is the discussion and conclusion. The glossary in Appendix A outlines relevant

genetic terminology. R and Stata code for some of the analysis is given in Appendix D

and two publications arising from this thesis are given at the end of the thesis.
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Chapter 2

Review of the literature relating

to the Mendelian randomization

approach

2.1 Introduction

The aim of this literature review is to identify and evaluate the strengths and limitations of

the Mendelian randomization approach. It is notable that the Mendelian randomization

draws from several subject areas such as econometrics and causal inference as well as

biostatistics, so a wide selection of reference material is included to compile this review.

To identify relevant literature, the ISI Web of Science (http://wok.mimas.ac.uk/) was

searched using the topic identifier;

TS=(mendelian randomization OR mendelian randomisation). This search produced

164 references up to July 2008. Of these the majority were original research articles

(94) with the remainder representing review articles, conference proceedings, letters and

editorial commentaries. Using the same terms as keywords in a search of Medline (http:

//www.ncbi.nlm.nih.gov/) produced 56 references. Comparing the two sets of search
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results there were some possibly spurious references in the Web of Science set because

the word ‘Mendelian’ is given as a keyword in many articles in genetic epidemiology not

specifically on the topic of Mendelian randomization and the Medline results did not

include conference proceedings such as Youngman et al. (2000).

Additional references were identified using search tools such as Google Scholar (http://

scholar.google.co.uk/) and Scirus (http://www.scirus.com). Notably, the Mendelian

randomization approach has also been discussed in several textbooks on epidemiology

(Elwood, 2007), statistical genetics (Lauritzen & Sheehan, 2007) and causal inference

(Didelez & Sheehan, 2007a) which are not found by the above search tools.

This review covers the statistical methodology, the initiation of the Mendelian randomiza-

tion approach, its assumptions and limitations and its application within epidemiology.

2.2 Initiation and advantages of the approach

This section outlines the initiation, adoption and advantages of the Mendelian random-

ization approach. The disadvantages of the approach are covered in Section 2.4.

2.2.1 Initiation of the approach

The aim of epidemiological research is to investigate the aetiology of disease within hu-

man populations. Notable epidemiological discoveries include identifying the associations

between smoking and lung cancer, between asbestos and mesothelioma and between in-

trauterine radiation and childhood leukaemia (Vandenbroucke, 2004). However, epidemi-

ology relies upon observational evidence and as a consequence there have been reported

associations which have not been replicated in later studies or confirmed in clinical trials

(Davey Smith & Ebrahim, 2002). It is therefore important to explain these false positive

findings.

The gold standard for medical research is a randomized controlled trial. In an RCT
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the randomization of subjects to treatment means that the statistical comparison of the

treatment groups should be free from confounding factors and represent an unbiased com-

parison of the treatments. As discussed in Chapter 1, in an observational study such as a

case-control or cohort study it is possible to apply statistical methods to control for other

measured covariates (Greenland & Morgenstern, 1989). However, this leaves the possibil-

ity that a result could be affected by confounding factors that were unmeasured or other

mechanisms such as reverse causation. It is argued that the Mendelian randomization

approach confers some of the benefits of randomization to observational studies, to quote

Bubela (2006),

The Mendelian randomization approach hopes to revitalize the discipline of epi-

demiology by strengthening causal inferences about environmentally modifiable

risk factors.

The use of genetic data to test the relationship between a quantitative intermediate phe-

notype and a disease in a way that is recognisable as Mendelian randomization was first

described by Katan (1986). The approach was not immediately widely adopted because

the use of genetic data in epidemiology was then uncommon. The first use of the term

‘Mendelian randomization’ was made by Gray & Wheatley (1991) although the application

was in the context of a clinical trial rather than an observational study. The approach has

also been referred to as ‘Mendelian deconfounding’ (Tobin et al., 2004), to avoid confu-

sion with the underlying biological process, and ‘Mendelian triangulation’ (Bautista et al.,

2006), to reflect the way in which the phenotype-disease association is inferred from the

gene-disease and gene-phenotype associations. It is now generally accepted that Mendelian

randomization represents the use of genes as instrumental variables in epidemiological re-

search (Lawlor et al., 2008d; Wehby et al., 2008).

The number of articles citing the term “Mendelian randomisation/randomization” in the

ISI Web of Science is shown in Figure 2.1. There was minimal reference to the approach

until Davey Smith & Ebrahim (2003) restarted interest and there are now upwards of

30 articles per year published referencing the topic. In particular the topic of Mendelian
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randomization and specifically Katan’s letter to the Lancet was the subject of a “Reprints

and Reflections” (Katan, 2004) in the International Journal of Epidemiology (volume 33,

number 1, 2004), which explains the increase in the number of papers published in that

year.
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Figure 2.1: The number of articles citing the term “Mendelian randomiza-
tion/randomisation” as recorded by ISI Web of Science.

There have also been a number of foreign language articles on the subject of Mendelian

randomization (Bammann & Wawro, 2006; Norby, 2005; Novotny & Bencko, 2007; Olsen

& Thulstrup, 2005), which indicates that the approach is becoming more well known.

The rise in the number of articles can also be explained due to the rise in the number

of replicated gene-disease associations which can be exploited within applied Mendelian

randomization studies.
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2.2.2 Katan’s original idea

The proposal of Katan (1986) which instigated the Mendelian randomization approach

has been summarised by Elwood (2007). An association was seen between low cholesterol

levels and increased cancer rates in observational studies such as McMichael et al. (1984).

It was suggested that this could be either a causal effect, with a reduction in cholesterol

causing an increase in cancer risk (hence requiring the treatment of high cholesterol to be

reconsidered), or due to pre-symptomatic cancers causing a reduction in cholesterol levels.

Katan was aware that conventional studies of the association between cholesterol and can-

cer could be limited by many factors associated with cholesterol levels such as dietary

factors. Katan therefore proposed to compare cancer risks in people with different poly-

morphisms of the apolipoprotein E gene. Individuals with the E2 allele have lower levels

of cholesterol because their genotype gives them greater efficiency in removing cholesterol

from blood plasma. Therefore, if low cholesterol causes an increased risk of cancer, people

with the E2 allele should have a higher risk of cancer. Also a comparison of subjects with

different genotypes should be free of confounding as the genotype would be distributed

randomly with respect to cholesterol levels. However, Katan’s idea was not immediately

pursued, although as Davey Smith & Ebrahim (2003) comment there are now a few reports

about the risk of cancer and apolipoprotein E.

2.2.3 Justification of the approach

The key argument behind the Mendelian randomization approach is that Mendel’s laws

justify the use of a subject’s genotype as an instrumental variable. The majority of papers

using the approach have followed the argument of Davey Smith & Ebrahim (2003) by

justifying the use of a genotype as an instrumental variable through the use of Mendel’s

second law.
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2.2.4 Controlling for unmeasured confounding

One of the main advantages of an instrumental variable analysis is the ability to control

for confounding. It is common practice in biostatistical research to control for measured

confounding variables within a statistical model. This typically results in a less biased

estimate of the effect of the variable of interest. However, many confounders of observed

associations may be unknown or unquantifiable. It has therefore been argued that it

is better to use modelling approaches that directly guarantee the unbiasedness of the

phenotype-disease such as Mendelian randomization (Vandenbroucke, 2004), or at least to

compare the two approaches (Bautista et al., 2006). It has been commented by Lauritzen

& Sheehan (2007) that,

Mendelian randomisation has been proposed as a method to test for, or esti-

mate, the causal effect of an exposure or phenotype on a disease when con-

founding is believed to be likely and not fully understood.

It is helpful to view confounding in terms of the variation in the outcome captured by

variables in the statistical model. A confounding variable captures some of the variability

in the distribution of the outcome variable explained by the variable of interest. This in

turn distorts the observed effect of the phenotype variable of interest (Pearl, 2001). If the

criticism that unmeasured confounding is present in a study then its presence should be

both, “biologically and quantitatively plausible” (Clayton, 2007).

2.2.5 A lifelong effect estimate

The use of genetic information in a Mendelian randomization analysis makes use of a

lifelong marker for the disease of interest (Brennan, 2004). Hence, a strength of Mendelian

randomization analyses is that the estimate of the phenotype-disease association reflects

a causal effect of lifelong mean differences in the phenotype (Lawlor et al., 2008c).

However, it is difficult to disentangle the issue of whether a Mendelian randomization es-
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timate is of a different lifelong effect compared with the direct estimate of the phenotype-

disease association from an observational study. For instance, Lawlor et al. (2008c) ex-

plained the differences between instrumental variable and direct estimates of the asso-

ciation between cholesterol and coronary heart disease using this lifelong effect estimate

argument.

2.3 Parallels with randomized controlled trials

Davey Smith & Ebrahim (2003) argue that the Mendelian randomization approach confers

some of the benefits of randomization, as used in randomized controlled trials, to epidemi-

ological analyses. This argument is often presented with a diagram similar to that shown

in Figure 2.2.

Mendelian 
randomization

Randomized 
controlled trial

Random segregation of alleles Randomization method

Exposed: 
risk allele

Control: 
common allele

Confounders 
equally distributed

Compare outcomes

Exposed: 
intervention

Control: no 
intervention

Confounders 
equally distributed

Compare outcomes

Figure 2.2: Comparison of Mendelian randomization and an RCT adapted from
Davey Smith & Ebrahim (2005, Figure 1).

A modified version of Figure 2.2 has been used by other authors in subsequent articles

which is shown in Figure 2.3. In this modified version it is slightly clearer that it is the

association between the phenotype and the disease that is of primary interest rather than

the gene-disease association.
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Genotype gg Genotype gG Genotype GG

Randomization of alleles

Mendelian randomization

Different disease risks

Randomized controlled trial

Randomization of interventions

Intervention Control

Different levels of the phenotype Different levels of the phenotype

Different disease risks

Figure 2.3: Alternative comparison of Mendelian randomization and an RCT adapted
from Hingorani & Humphries (2005, Figure 2) and CRP CHD Genetics Collaboration,
(2008, Figure 1).

2.3.1 Gray and Wheatley’s approach to Mendelian randomization

Gray & Wheatley (1991) were the first authors to use the term ‘Mendelian randomization’

however their application of the approach in this and subsequent papers (Wheatley, 2002;

Wheatley & Gray, 2004) was slightly different from the epidemiological applications. They

proposed to use the approach in a clinical setting in which it was neither possible nor ethical

to randomize patients to treatment groups.

Gray and Wheatley’s approach to Mendelian randomization is that there are some situ-

ations in which it is not possible to perform a randomized controlled trial. Their main

example is the assessment of the efficacy of allogenic stem cell transplantation (SCT) in

leukaemia. They report that the ongoing Medical Research Council trial AML 15 has

been designed to evaluate SCT using a donor versus no-donor comparison, those with-

out a donor receive Conventional Intensive Consolidation Chemotherapy (CCT), based on

their approach (Burnett et al., 2005). The motivation behind Gray and Wheatley’s idea

was that haematologists believed that SCT should be the treatment of choice for younger

leukaemia patients who have a matched sibling (in terms of human leucocyte antigen,

known as HLA) available as a bone marrow donor. One drawback of the approach is that

theoretically for a given child there is only a 25% chance that one of their siblings will

have the matching tissue type.

Gray and Wheatley’s approach has been criticised from the perspective of mathematical
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genetics (Curnow, 2005). In particular, Curnow argued that patients with a compatible

sibling will have HLA genotypes in different proportions to those without a compatible

sibling. However, this would only be important if the effectiveness of SCT was related to

patients’ genotypes.

2.4 Assumptions and limitations of the approach

Given that theoretically it is possible for a genotype to fulfill the conditions of an instru-

mental variable the next stage is to assess whether this is reasonable for a particular study.

The ‘core’ conditions, as they have been described by Didelez & Sheehan (2007b), for a

genotype to be an instrumental variable were given in Chapter 1. The conditions state

that the genotype should be associated with the phenotype, independent of factors that

may confound the phenotype-disease association and independently distributed from the

disease outcome variable given the phenotype, i.e. the genotype should only act through

the phenotype to affect disease risk. The first and second conditions can be investigated

using standard statistical tests, an example is given by Lawlor et al. (2008d). The third

condition is not easy to assess and relies heavily on background knowledge of the genetics

of the example.

In addition to the ‘core’ instrumental variable conditions there are other genetic and envi-

ronmental factors which have been discussed in order to establish the validity of Mendelian

randomization analyses. In total Davey Smith & Ebrahim (2004) and Nitsch et al. (2006)

list nine conditions with a further three conditions suggested by Bochud et al. (2008) for

Mendelian randomization analyses to be valid in applied studies. These have been de-

scribed as necessary conditions for the use of Mendelian randomization to infer causality

in observational epidemiology. The conditions adapted from Bochud et al. (2008) are given

below and are then discussed in turn:

1. Sufficient sample size to establish reliable genotype-phenotype, or genotype-disease

associations.
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2. Absence of confounding due to linkage disequilibrium.

3. Absence of confounding due to population stratification.

4. Absence of pleiotropy (the multiple function of individual genes).

5. Absence of canalization or developmental compensation (a functional adaption to

a specific genotype influencing the expected genotype-disease association or social

pressures on behaviours affected by genotype).

6. A suitable genetic variant exists to study the phenotype of interest.

7. The association between gene and phenotype is strong.

8. The effects of a gene on a disease outcome acts only via the phenotype.

9. The genetically determined phenotype has a similar impact on disease risk as the

phenotype.

10. Absence of segregation distortion, or transmission ratio distortion (TRD), at the

locus of interest.

11. Absence of selective survival due to the genetic variant of interest.

12. Absence of parent-of-origin effect.

Large sample sizes (condition 1) are required for Mendelian randomization analyses and

is one of the reasons that the meta-analysis of Mendelian randomization studies has been

suggested (Lawlor et al., 2008d) and performed (Lewis & Davey Smith, 2005). More

generally, in genetic epidemiology it is recognised that genetic effects typically explain a

small proportion of the variation in a phenotype (Frayling et al., 2007a). Non-replication

of the results of genetic association studies was common until recently (Hirschhorn et al.,

2002). Probable reasons for this include a lack of statistical power coupled with reporting

and publication bias (Cardon & Bell, 2001; Little & Khoury, 2003). In recognition of this

fact several journals have recently changed their publication policy in that any significant
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gene-disease associations must be reproduced in a second independent study. For example,

Zeggini et al. (2007) provide replication of their association between certain polymorphisms

and type II diabetes.

The CRP CHD Genetics Collaboration, (2008, Figure 4) (CRP: C-reactive protein; CHD:

coronary heart disease) present sample size calculations for a Mendelian randomization

analysis which showed that typically not less than 10,000 cases are required for a minimum

odds ratio of 1.2 and minor allele frequency of 5%. Sample size calculation is an area in

econometrics which has not received attention because econometric analyses are usually

performed on existing official studies with large sample sizes.

Mendelian randomization requires the lack of effect of linkage disequilibrium (condition 2)

at the locus of interest. Linkage disequilibrium occurs when two genetic polymorphisms

are associated, most commonly because they are close to one another in the genome as a

consequence of being inherited together over many generations. Mendel’s second law, that

genes segregate independently, fails to hold when two genetic polymorphisms are in linkage

disequilibrium with one another. An association between a genotype and a disease might

therefore be biased due to the omission of other SNPs in linkage disequilibrium with the

SNP of interest. Also, differences in patterns of linkage disequilibrium between populations

may partly account for differing estimates from gene-disease association studies (Little &

Khoury, 2003).

Didelez & Sheehan (2007b) provide a number of DAGs to show how some of these condi-

tions might affect a Mendelian randomization analysis, some of which are included in this

review. In the DAGs, G represents the genotype variable, X the phenotype variable, Y

the disease outcome variable and U a confounding variable.

Figure 2.4(a) shows that if the gene of interest G1 is in LD with another gene G2 which

has an effect on disease risk not through the phenotype then the core IV condition that

the gene should be independent of the disease is violated. Figure 2.4(b) shows that if G1

is in LD with G2 and G2 is associated with the confounders then the IV condition that the

gene should be independent of the confounders is violated. Figure 2.4(c) shows a situation
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Figure 2.4: DAGs for possible ways linkage disequilibrium may occur in a Mendelian
randomization analysis (Didelez & Sheehan, 2007b, Figure 5).

in which linkage disequilibrium does not violate the core IV conditions because G2 is only

associated with the disease through the phenotype.

There is a concern that an observed association between a gene and a disease may be

affected by population stratification (condition 3) (Little et al., 2003) and that this in

turn threatens the reliability of Mendelian randomization analyses (Thomas & Witte,

2002). The effects of population stratification in genetic associations studies is sometimes

described as confounding at the genetic level because different genetic subgroups within

a sample carry different risks of disease. If the presence of population stratification is

known in a study it can be controlled for by performing a stratified analysis (Ardlie et al.,

2002; Cardon & Palmer, 2003; Thomas & Witte, 2002; Wacholder et al., 2002). Indeed

within genetic epidemiology caution over population stratification has led to instances

where family-based associations have been used in place of case-control studies (Ziegler &

König, 2006, Chapter 10).

However, population stratification may be harder to control for if there has been recent

admixture in a population (Knowler et al., 1988). Typically, admixture is only problematic

in certain populations such as in the US, whereas UK based studies such as the The

Wellcome Trust Case Control Consortium (2007) have been found to be relatively free of
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population stratification. Davey Smith (2006) states that the Mendelian randomization

approach should be applied in populations of homogeneous origin.

G X Y

UP

(a)

G X Y

UP

(b)

Figure 2.5: DAGs for possible ways population stratification may affect a Mendelian
randomization analysis (Didelez & Sheehan, 2007b, Figure 8).

Figure 2.5(a) shows that population stratification can violate the IV condition that the

genotype should be independent of the disease. Figure 2.5(b) shows a situation in which

population stratification does not violate any of the core IV conditions, and it has been

commented that such instances may strengthen inferences about the genotype-disease

association (Didelez & Sheehan, 2007b).

Pleiotropy (condition 4) can be problematic for a Mendelian randomization analysis if

another compound being metabolized by a gene also affects the risk for the disease under

question. This is shown in Figure 2.6(a) and demonstrates that gene may no longer be

independent of the risk of disease. Figure 2.6(b) shows the situation where the second

compound is linked with the confounders which means the gene is no longer independent

of them, which also violates a core IV condition. It may be possible to adjust for the

effects of this second compound if its function is known (Brennan, 2004).
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Figure 2.6: DAGs for possible ways pleiotropy may affect a Mendelian randomization
analysis (Didelez & Sheehan, 2007b, Figure 6).

Canalization or developmental compensation (condition 5) refers to processes which reflect
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developmental buffering against the effect of a polymorphism during fetal or possibly

post-natal development. As Davey Smith & Ebrahim (2004) point out certain Mendelian

randomization analyses are more prone to canalization than others. For example, if the

phenotype is associated with a behaviour that is only adopted after development has

ceased then canalization should not affect these analyses.

As noted by Vineis (2004) a Mendelian randomization analysis requires considerable knowl-

edge on the part of the researcher since knowledge about suitable genetic variants and

their function is required (condition 6). Brennan (2004) reinforces this by stating that the

problem with the Mendelian randomization approach is that the gene responsible for the

environmental or lifestyle agent must be known a priori to the analysis, also knowledge of

disease mechanisms is required (Little & Khoury, 2003).

The requirement for a strong gene-phenotype association (condition 7) is to avoid the

possibility that the genotype may be a ‘weak instrument’ and to try to ensure the resulting

estimate of the phenotype-disease association is precise. If the instrument is ‘weak’ then

the two-stage least squares estimate, for use with a continuous disease variable, will be

biased (Staiger & Stock, 1997).

That the effect of the gene on the disease outcome should be only via the phenotype

(condition 8) is one of the core IV conditions. Biological background knowledge is required

in order to judge whether this condition holds.

That the genetically determined phenotype has a similar impact on disease risk as the

environmental phenotype investigated (condition 9) was suggested by Bochud et al. (2008).

It is not actually clear that this condition required by instrumental variable theory, for

example it is more important to examine the strength of the instrumental variables.

Segregation distortion or meiotic drive (condition 10) describes transmission ratio distor-

tion (TRD) during meiosis. This occurs when the distribution of alleles at a particular

locus differs from the distribution of alleles at a particular locus in the surviving offspring

from that expected in Mendelian proportions. After meiosis transmission ratio distortion
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may result from selective survival between conception and birth or later. Davey Smith &

Ebrahim (2008) argued that TRD would only affect a Mendelian randomization analysis

if it induced a correlation between the genotype and a confounding factor which these

authors considered to be unlikely at a population level.

Absence of selective survival due to the genetic variant of interest (condition 11) is possibly

a reference to the concern that differential genotype outcomes could bias the results of

genetic association studies.

A parent-of-origin effect (condition 12) occurs when the effect of an allele on a phenotype

is dependent upon which parent the allele was inherited from. For example, some genes are

functionally active depending on whether a particular variant is inherited from the mother

or father. The presence of a parent-of-origin effect implies that the effect on the phenotype

conferred by a specific genetic variant is not homogeneous in the population (Bochud et al.,

2008). Davey Smith & Ebrahim (2008) stated that this was unlikely to be problematic at

a population level and concluded that more empirical data is required before it is known

whether the extra conditions of Bochud (conditions 10–12) are of practical importance.

2.4.1 Comparison with traditional epidemiological methods

It is interesting to compare direct estimates of a given phenotype-disease association with

Mendelian randomization estimates, which is akin to the idea behind the Hausman test.

Such a study has been performed by Bautista et al. (2006) who compared direct phenotype-

diseases associations from observational studies with associations derived from Mendelian

randomization analyses. Bautista et al. (2006) argue that whilst Mendelian randomization

estimates are supposedly unbiased, they may be inaccurate if the sample size is too small.

As such they propose a method that gives a range of plausible values for unbiased odds

ratios for a Mendelian randomization analysis. The authors argue that their approach

is more informative than a statistical test between the results of the different studies.

However, Bautista et al. (2006) encountered a number of practical difficulties, for example

it was not always possible to compare the direct and IV estimates from the same study,
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and their approach has been criticised for being statistically naive (Thomas et al., 2007).

A similar comparison of direct and Mendelian randomization phenotype-disease estimates

was made in a review evaluating the role of fibrinogen and C-reactive protein as risk factors

for cardiovascular disease by Davey Smith et al. (2004). The findings of the two previous

reviews of Kamath & Lip (2003) and Hirschfield & Pepys (2003) were not in agreement

with Mendelian randomization analyses. However, it was argued that the original studies

were under-powered because the genotype-phenotype effect was modest compared with

the variability of the phenotype in the population. It can be noted that the CRP CHD

Genetics collaboration has been set up to help resolve questions in this research area.

Also, Kolz et al. (2008) have found direct estimates that were adjusted for confounding

factors which were in agreement with the Mendelian randomization analysis of Timpson

et al. (2005).

2.4.2 Other limitations

Nitsch et al. (2006) were cautious about Mendelian randomization from the perspective

of causal inference because Mendelian randomization studies are observational and there

is a general issue about how to make causal inferences from observed associations. For

example, making causal inferences using instrumental variable analysis is not included in

the Bradford Hill causality criteria (Bradford Hill, 1965). However, this probably reflects

that instrumental variable methods were not well known when the causality criteria were

written.

Figure 2.7 illustrates genetic heterogeneity, the situation when more than one gene affects

the phenotype. As represented here, genetic heterogeneity would not violate any of the

core IV conditions assuming that neither G2 nor G3 affected the confounders or the risk of

disease in a way other than through the phenotype. Didelez & Sheehan (2007b) argue that

genetic heterogeneity could weaken an observed gene-phenotype association and therefore

genetic heterogeneity could be an explanation if a genotype was found to be a weak

instrument. Bochud (2008) argues that genetic heterogeneity could weaken an association
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in a Mendelian randomization study since the level of genetic heterogeneity underlying

many complex traits is unclear. They argue that most genetic association studies rely on

the assumption the “common disease, common variant hypothesis” which implies that the

same variants are causal in affected individuals. Therefore, if this assumption did not hold

for a particular analysis then genetic heterogeneity could weaken an association.
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G
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U

Figure 2.7: DAG demonstrating genetic heterogeneity in a Mendelian randomization anal-
ysis (Didelez & Sheehan, 2007b, Figure 7).

Additionally, Mendelian randomization does not inform strategies for genetic screening for

disease risk or targeting therapy (Davey Smith, 2006). Also Sheehan et al. (2008) point

out that causal inference is not the primary interest in prognostic research.

For the data from a genetic-association study to be used in a Mendelian randomization

analysis the genotypes of the controls should be in Hardy-Weinberg equilibrium (HWE).

Only the controls are specified since selection by disease status may affect HWE (Ziegler

et al., 2008a). HWE in the controls indicates that the data is a representative sample from

the population in order to robustly infer gene-disease associations in genetic association

studies (Salanti et al., 2005a). Rodriguez et al. (2009, Table 6) consider the impact

of deviations from Hardy-Weinberg in controls on the gene-disease association p-value.

They present a sensitivity analysis by adding hypothetical missing observations to put

a study in perfect HWE and argue that these missing observations can strengthen the

gene-disease association. Important causes of departure from Hardy-Weinberg equilibrium

include genotyping error, which may be differential between cases and controls (Clayton,

2007; Clayton et al., 2005). In this regard it is also desirable that those undertaking the

genotyping are blind to the case-control status of the samples to avoid selective checking of
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the results or biased genotype calling if there is overlap between genotypes on the intensity

plot for a particular polymorphism (Ziegler et al., 2008a).

Mendelian randomization has been criticised that it over-simplifies the underlying biology

of causal pathways of disease, Jousilahti & Salomaa (2004) comment that,

“Mendelian randomisation” is, in most cases, a gross oversimplification of the

underlying biology of a complex, multifactorial disease. We suspect that its

applicability is likely to be rare and limited to a few special occasions.

However, as pointed out by Davey Smith (2006) this criticism misses the point that

Mendelian randomization is essentially instrumental variable analysis with genetic instru-

ments as clarified by Wehby et al. (2008). As noted by Thomas & Conti (2004), those

in favour of Mendelian randomization analyses do not doubt that biological pathways

are more complex than the simple triangulation relationship (of the ratio of coefficients

approach) implies.

Ziegler et al. (2008b) argued that the assumptions of Mendelian randomization may not

hold for the applied example used by Lawlor et al. (2008d). Ziegler et al.’s argument was

biological rather than statistical, specifically, they argued that the core condition that the

genotype should be independent of confounding factors may not hold for the example.

However, Ziegler et al.’s comments do not refer to an identical causal pathway since their

citations found an association between tumour necrosis factor A (TNFA) genotypes and

sepsis (Little et al., 2006; Menges et al., 2008) and CRP genotypes were used in the

example. It is therefore uncertain whether the argument of Ziegler et al. would affect the

example. Lawlor et al. (2008a) also commented that the evidence cited against their work

was also not fully available in published literature.
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2.5 Instrumental variable methods

This section discusses statistical methods for instrumental variable analysis. As noted by

Thomas & Conti (2004), when Katan proposed the idea of Mendelian randomization he

did not explicitly reference the method of instrumental variable analysis. However, this is

the theory on which such analyses are based. The theory of instrumental variable analysis

has largely been developed and applied within econometrics (Bowden & Turkington, 1984)

and the first use of the term ‘instrumental variable analysis’ is attributed to Reiersol (1941,

1945). Theory relating to instrumental variable analysis has also been developed in causal

inference such as Pearl (2000).

The Mendelian randomization approach is not the first application of instrumental variable

analysis in epidemiology. For example, Grootendorst (2007) details non-genetic variables

that have been used as instrumental variables in epidemiological analyses. Also, intro-

ductions to instrumental variable analysis have been written for epidemiologists such as

Zohoori & Savitz (1997) and Greenland (2000).

2.5.1 Econometric methods for continuous outcome variables

There are three main forms of instrumental variable analysis performed in econometrics,

these are known as the two-stage least squares, ratio of coefficients and control function

approaches. All three methods produce equivalent parameter estimates when all variables

are continuous.

Two-stage least squares was proposed by Theil (1953) and Basmann (1957) and involves a

series of two linear regressions. For a Mendelian randomization analysis the phenotype is

first regressed on the genotype. From this equation the predicted values of the phenotype

are generated. The second stage regression is of the disease outcome on the predicted phe-

notype variable. It is important to correct the standard errors of the parameter estimates

after the second stage of two-stage least squares, especially when the sample size is small

(Baltagi, 1998, page 280). The application of two stage least squares has been carefully
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described with respect to the ‘core’ conditions for an instrumental variable by Lawlor et al.

(2008d), Wehby et al. (2008) and Sunyer et al. (2008). The resulting parameter estimate

for the predicted phenotype variable is interpreted as the phenotype-disease association,

which is assigned a causal interpretation in the absence of interactions. The intercept from

two-stage least squares has the same interpretation as the intercept in an ordinary least

squares regression, which is the expected value of the disease outcome variable when all

other explanatory variables are set to zero.

The ratio of coefficients approach is attributed to Wald (1940) and is sometimes referred to

as the Wald estimator. In the context of Mendelian randomization the method divides the

estimate of the gene-disease association by the estimate of the gene-phenotype association.

Carroll et al. (2006, Chapter 6) has given a mathematical proof of the Wald estimator.

The control function approach is not as precisely defined in the literature compared with

the other two methods. The description given here is that of Nichols (2006), but some

econometrics textbooks such as Cameron & Trivedi (2005) are not particularly clear in

their description of the method. The name of the control function approach derives from

the fact that it is designed to control for confounding and in general terms it is a method

designed to approximate the influence of omitted variables. An example of the use of a

control function approach for continuous variables is given by Heckman & Hotz (1989).

Referring to the stages from two-stage least squares, one way to derive control function

estimates for a continuous disease outcome variable is to include the residuals from the

first stage regression in the regression of the disease outcome variable on the phenotype

(Nichols, 2006). The use of the control function approach has been suggested to help over-

come some of the difficulties in applying instrumental variable methods to non-continuous

outcome measures (Karaca-Mandic & Train, 2003; Petrin & Train, 2003).

To help assess whether a proposed instrumental variable fulfills the ‘core’ conditions there

are a number of statistical tests that have been proposed within econometrics. Two

well known econometric tests are the Hausman test (Hausman, 1978) and the Sargan

test (Sargan, 1958). For a parameter in a linear regression the Hausman test examines
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the difference between the ordinary least squares estimate and the instrumental variable

estimate. This test is also referred to as the Durbin-Wu-Hausman test (Martens et al.,

2006). The Hausman test is also sometimes referred to as a test of endogeneity in the sense

that if there is a statistically significant difference between the two estimates then there

is reason to support the presence of endogeneity. The Sargan test evaluates the quality or

strength of the chosen instrumental variable, it is referred to as a test of over-identifying

restrictions. The J-test (Hansen, 1982) is closely related to the Sargan test. There are also

several other statistical tests relating to instrumental variable analysis which are discussed

by authors such as Baum et al. (2007).

2.5.2 Fieller’s Theorem

Fieller’s Theorem (Fieller, 1954) is relevant for instrumental variable analyses because it

is concerned with the ratio of two normally distributed random variables and hence it

relates to the ratio of coefficients approach. Fieller’s Theorem states that the ratio of two

independent standard normal random variables is a standard Cauchy random variable,

hence the Cauchy distribution is a ratio distribution. The standard Cauchy distribution

arises as a special case of Student’s t distribution with one degree of freedom and the

mean and variance of the Cauchy distribution are undefined. Fieller’s Theorem has been

discussed for the case when the two normally distributed random variables are correlated

(Hinkley, 1969, 1970). Marsaglia (1965) and Marsaglia (2006) provide further discussion

about the ratio of normally distributed random variables.

The possible implications of Fieller’s Theorem for the ratio of coefficients approach in

the context of Mendelian randomization have been discussed by Thompson et al. (2003).

This report focused on deriving appropriate confidence intervals for the ratio of coeffi-

cients estimate of the phenotype-disease association. If uncertainty in the gene-phenotype

association is taken into account then the confidence interval for the phenotype-disease as-

sociation may not be continuous. This has led to comments that Mendelian randomization

analyses are most efficient when the genotype-phenotype relationship has high precision
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(Thomas & Conti, 2004).

2.5.3 The Method of Moments and the Generalised Method of Moments

In econometrics M-estimation is taken to mean ‘maximum-likelihood-like’ estimation and

covers maximum likelihood and non-linear least squares estimation techniques (Cameron

& Trivedi, 2005, page 119). Method of Moments (MM) estimation specifies a set of

population moment conditions and solves the corresponding sample moment conditions.

MM estimation may not be feasible in certain circumstances due to the over-identification

of a system of equations, i.e. there might be more moment conditions to solve than the

number of parameters. The Generalised Method of Moments (GMM) technique (Hansen,

1982) was proposed to accommodate this complication (Cameron & Trivedi, 2005, Chapter

6).

Under GMM different population moment conditions specify different GMM estimators

in the same way that different distributions specify different models in the generalised

linear models framework (Johnston et al., 2008). Foster (1997) reviewed GMM techniques

including models using a logit link of the same form as those discussed by Johnston et al.

(2008) which is relevant for epidemiological study designs. These moment conditions are

discussed in Section 3.2.7.

2.6 Causal inference

Causal inference is a form of statistical modelling which is concerned with making causal

interpretations from statistical analyses (Pearl, 2001). Causal inference is relevant to the

discussion about Mendelian randomization since instrumental variable analyses can have a

causal interpretation. The question of whether the estimate of a phenotype-disease associ-

ation from a Mendelian randomization analysis has a causal interpretation will depend on

the type of data being analysed and the methods used to perform the analysis (Didelez &

Sheehan, 2007b). Statisticians are very familiar with the axiom that ‘correlation does not
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imply causation’. This means that an observed correlation between two variables does not

imply that there is a cause-and-effect relationship between them. However, correlation

between two variables is required for a causal relationship between two variables to be

proved, although well designed studies are required (Holland, 1986). The following related

quote is taken from Pearl (2001).

One cannot substantiate causal claims from associations alone, even at the

population level, behind every causal association there must lie some causal

assumption that is not testable in observational studies.

From the perspective of causal inference the biological process of Mendelian randomization

at meiosis has been described as a ‘minimal’ condition because the unique identification of

the causal effect of the phenotype on disease is only possible in the presence of assumptions

(Didelez & Sheehan, 2007b). These assumptions require all dependencies in the modelling

framework to be linear and additive. However, it is possible to compute bounds for the

causal effect of the phenotype on the disease when all variables are binary (Balke & Pearl,

1994; Manski, 1990). Bounds can be computed for the phenotype-disease association in

case-control studies if the disease prevalence is known (Didelez & Sheehan, 2007b).

A central issue for Mendelian randomization analyses is whether the phenotype-disease

association can be assigned a causal interpretation under the full class of GLMs (Didelez

& Sheehan, 2007b). In this regard some epidemiologists may indeed have been ‘fast and

loose’ with the use of the term ‘causality’ in relation to Mendelian randomization analyses.

In particular when there is a non-linear relationship between a phenotype and a disease

the parameter estimates from a Mendelian randomization analysis may not have a causal

interpretation. However, this matter is non-trivial, which has led some authors to argue

that it may be more appropriate to describe estimates derived for non-linear relationships

between the phenotype and disease as free from confounding rather than causal (Tobin

et al., 2004).

Structural equation modelling is a form of causal inference (Pearl, 2000). Grassi et al.

(2007) investigated the association between homocysteine and ischaemic heart disease
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using Mendelian randomization. The authors described their approach as a structural

equation modelling approach even though their approach was in fact the ratio of coefficients

approach. Grassi et al. (2007) stated that in Mendelian randomization the phenotype

should be a complete mediator of the genotype and in such circumstances the ratio of

coefficients approach is a structural equation modelling approach.

The use of direct acyclic graphs, from causal inference, to describe Mendelian randomiza-

tion analyses is particularly informative (Didelez & Sheehan, 2007b; Lauritzen & Sheehan,

2007). In particular, the typical DAG for a instrumental variable analysis, as per Figure

1.1, has been used in several articles on Mendelian randomization (Didelez & Sheehan,

2007b; Lawlor et al., 2008d). Didelez & Sheehan (2007a) provide DAGs and their accom-

panying moral graphs for a number of limitations for Mendelian randomization analyses.

A moral graph is the equivalent undirected form of a DAG with additional edges connect-

ing nodes that have a common child (Cowell et al., 1999). The purpose of a moral graph

is to show which nodes are conditionally independent, as indicated by any nodes that are

unconnected on the moral graph.

2.7 Meta-analysis methods

Meta-analyses combine the results of multiple studies to provide a quantitative summary

of the evidence on a research question and are often presented to summarise a systematic

review. It has been argued that it is unlikely that a single Mendelian randomization study

will have a large enough sample size to have adequate power to detect a small effect esti-

mate (Lawlor et al., 2008d). Meta-analyses have higher power than individual studies to

detect effect size estimates, since the power of a meta-analysis is a function of the total

sample size of the included studies. It has also been argued that medical research and clin-

ical practice should be based upon, “the totality of relevant and sound evidence” (Sutton

& Higgins, 2008), hence meta-analyses should be performed for Mendelian randomization

analyses.
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Meta-analysis models estimate a pooled effect estimate from a set of studies and are

described as either fixed or random effects models depending on the assumptions made

about the underlying pooled effect (Sutton et al., 2000). Fixed effects models assume that

each study’s effect estimate comes from a single underlying pooled effect. In fixed effects

models the pooled estimate is derived as a weighted average with the weights inversely

proportional to the variance of each study’s effect estimate (Fleiss, 1993). Random effects

meta-analysis models assume that each study has a different underlying effect estimate,

the mean of which is the true underlying effect (DerSimonian & Laird, 1986). In a random

effects model the ‘between-study’ variance of the distribution of the underlying effects has

to be accommodated in the weights used to derive the pooled estimate, hence these models

typically produce wider confidence intervals about the pooled estimate (Jones, 1995).

Meta-analysis models for Mendelian randomization using the ratio of coefficients approach

incorporate two sets of variables and it is therefore possible to apply methods for multivari-

ate meta-analysis (van Houwelingen et al., 1993, 2002) as demonstrated by Minelli et al.

(2004) and Thompson et al. (2005). The strength of multivariate meta-analysis models is

that they can accommodate the correlation between the multiple outcome measures.

The limitations that apply to the meta-analysis of genetic association studies are rele-

vant to Mendelian randomization meta-analyses. These limitations include: population

structure, linkage disequilibrium, conformity to Hardy-Weinberg equilibrium, bias, pop-

ulation stratification, statistical heterogeneity, epistatic (the interaction between genes)

and environmental interactions, and the choice of statistical models used in the analysis

(Salanti et al., 2005b). That these factors may vary between studies has prompted authors

to argue that meta-regression techniques could be helpful for Mendelian randomization

meta-analyses (Salanti et al., 2005b).

Mendelian randomization meta-analyses can also benefit from HuGE Net (Human Genetic

Epidemiology Network) (http://www.cdc.gov/genomics/hugenet/) reviews which seek

to report robust gene-disease associations (Little et al., 2003). There are also a num-

ber of relevant databases cataloging gene-disease associations, such as the Genetic Asso-
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ciations Database (http://geneticassociationdb.nih.gov/) and the National Human

Genome Research Institute catalogue of published genome wide association studies (http:

//www.genome.gov/26525384). There are also databases cataloging gene-phenotype asso-

ciations such as the GEN2PHEN project (http://www.gen2phen.org/index.html) and

the Human Genome Variation database of Genotype-to-Phenotype (HGVbaseG2P) infor-

mation (http://www.hgvbaseg2p.org/index).

2.8 Epidemiological analyses applying the approach

Davey Smith (2007) described several applied examples of Mendelian randomization anal-

yses. In this and another article (Ebrahim & Davey Smith, 2007) it was found that

Mendelian randomization has been applied to the following risk factors and diseases; milk

and osteoporosis, alcohol and coronary heart disease, sheep dip and farm workers’ com-

pensation neurosis, folate and neural tube defects and C-reactive protein and coronary

heart disease, to name a few. For successful application of the approach good study de-

sign principles need to be followed such as a simple well defined phenotype and a large

sample size to provide adequate power for the analysis.

In the following subsections Tables 2.1, 2.2 and 2.3 summarise some of the applied examples

of individual studies and meta-analyses that have applied the Mendelian randomization

approach. The tables are not exhaustive and are meant to provide examples of the types

of analyses that have been performed. The tables list the disease, phenotype and genotype

investigated, the findings of the study and the statistical methods used for the analysis.

These tables are adapted from Sheehan et al. (2008, Table 1). In the tables the following

abbreviations are used; CHD: coronary heart disease, CRP: C-reactive protein, FTO: fat

mass and obesity related, GD: gene-disease association, GP: gene-phenotype association,

MR: Mendelian randomization, PD: phenotype-disease association, T2D: type II diabetes,

TSLS: two-stage least squares.
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2.9 Discussion

This review has discussed the initiation and advantages of the Mendelian randomization

approach; the parallels with randomized controlled trials; the assumptions and limitations

of the approach; instrumental variable, causal inference and meta-analysis methods; and

epidemiological analyses applying the approach.

This review demonstrates that there is a consensus that the use of genetic data can make

a valuable contribution to epidemiological research in addition to the contribution of more

standard genetic epidemiological analyses such as genetic association studies (Khoury

et al., 2005). Davey Smith (2007) argue that genetic evidence should be used in epidemi-

ology not only to identify the cause of disease but also to identify modifiable environmental

risk factors in order to better prevent and treat disease which is the aim of the Mendelian

randomization approach.

This review has highlighted that although a relatively small number of applied Mendelian

randomization analyses have been published there has been considerable discussion of the

potentials and limitations of the approach within the epidemiological literature. It is a

strength of the approach that it can appeal to Mendel’s second law of genetics in order to

justify the instrumental variable assumptions. This contrasts with the use of non-genetic

instrumental variables in other areas of epidemiology and in other subject areas such as

economics in which the same instrumental variable assumptions are justified using prior

observational research.

The review has discussed research into instrumental variable methods from biostatistics,

causal inference and econometrics. However, as Lawlor et al. (2008c) discussed there are

barriers to overcome in terms of the different terminologies used in these subject areas. One

example is the econometric concept of endogeneity which encompasses the biostatistical

and epidemiolical concepts of confounding and reverse causation.

It has been shown that Mendelian randomization analyses are based on two sets of as-

sumptions; one set which relates to the core instrumental variable conditions and another
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set which relates to the practical implementation of a study on a particular research

question. Therefore, in a Mendelian randomization analysis it is important to provide a

thorough discussion of whether these assumptions have been met both theoretically and

practically (Keavney et al., 2004). The Mendelian randomization approach is also in-

creasingly being cited in review articles as a method to explore for further research. For

example, Ducimetière & Cambien (2007) referred to the approach in this way with respect

to research into coronary heart disease aetiology.

In general it is becoming more common that methods for causal inference are being applied

to observational data to compare the results with those from randomization controlled

trials. For example, Hernán et al. (2008) re-analysed data from the Nurses’ Health Study

using causal models and found results more similar to the Women’s Health Initiative trial

whereas the original analysis of the Nurses’ Health Study found results in the opposite

direction to the trial. The argument of these authors is that when applying causal models

to observational data it is important to specify the correct causal question in order to

provide answers comparable with those from randomized trials.

The Mendelian randomization approach is relatively new and hence this review has found

that it is currently not referenced in several of the collaborative sets of guidelines about

study quality. In particular, the Mendelian randomization approach could be referenced

in the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)

statement (Ebrahim & Clarke, 2007) and the Meta-analysis of Observational Studies in

Epidemiology (MOOSE) statement (Stroup et al., 2000). With respect to the Bradford

Hill causality criteria Cox & Wermuth (2001) argue that these criteria were designed as

a series of conditions which make the hypothesis of causality more convincing but none

of which are either necessary or sufficient to prove causality. Hence, it is not necessary

that the Bradford Hill causality criteria make reference to specific statistical methods for

causal inference.

With respect to the areas of research subsequently investigated in this thesis, PHOEBE

(2007) comment that,

44



Chapter 2. Literature review

The method of Mendelian randomization definitely has promise for observa-

tional epidemiology but, in order to widen its applicability, general methods

for the non-linear case are required and different causal parameters could be

considered.

This highlights that there is a gap in the literature on instrumental variable models in that

the equivalent of the full class of models encompassed by the family of generalised linear

models has not been clearly defined. Hence, there is scope to investigate instrumental

variable estimators appropriate for the analysis of epidemiological studies such as case

control and cohort studies and this provides the motivation for the work in chapters 3 and

4.

It has been noted that the use of meta-analysis are becoming more common in epidemiol-

ogy and genetic epidemiology, in particular the meta-analysis of genetic association studies

(Verzilli et al., 2008). Meta-analysis has a number of advantages for Mendelian random-

ization analyses. It may be the case that for small effect sizes a meta-analysis is the only

way to provide conclusive evidence on a particular research question. Also, under the

ratio of coefficients approach the phenotype-disease association can be derived from gene-

disease and gene-phenotype associations. Hence, Mendelian randomization meta-analyses

could be undertaken on studies that did record all three outcomes and were not originally

designed to be part of a Mendelian randomization analysis. Therefore, there is scope to

investigate meta-analysis methods using the Mendelian randomization approach and this

provides the motivation behind the research in chapters 5 and 6.

In conclusion, this review demonstrates that the Mendelian randomization approach repre-

sents an example of the use of causal analysis in observational studies. The main limitation

in terms of statistical modelling approaches for Mendelian randomization analyses is that

methods for the instrumental variable analysis of binary and categorical outcome data

are not well developed, hence there is scope for investigating statistical models for both

individual studies and meta-analysis in this area.
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Chapter 3

An adjusted instrumental variable

estimator: theory

3.1 Introduction

The aim of this chapter is to investigate instrumental variable models for the analysis

of epidemiological studies such as case-control or cohort studies that report binary out-

comes. Instrumental variable theory is well developed for continuous outcome variables

and Mendelian randomization analyses can be applied to continuous outcome variables

using the methods of two-stage least squares or the ratio of coefficients approaches. How-

ever when the outcome variable is categorical or binary as in case-control or cohort studies

estimation is more problematic, prompting comments such as PHOEBE (2007),

However, the strong additional parametric assumptions such as linearity of all

relationships and no interactions required for calculation of the average causal

effect are usually not justifiable for epidemiological applications where a binary

disease outcome is commonly of interest. In the non-linear / interaction case,

even the specification of the causal parameter is not obvious and determination

of its relationship to the relevant regression parameters that can be estimated
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from the data is not straightforward..

Instrumental variable theory has not been fully generalized to non-linear situations (Pearl,

2000) so the practical implications of such a violation of the core assumptions have not

yet been clearly defined. The specification of the relevant causal parameter and identifica-

tion of how it relates to what can be estimated in observational studies are not generally

straightforward (Didelez & Sheehan, 2007b). However, the two-stage least squares ap-

proach has been adapted for a non-linear effect of the phenotype, an approach known as

non-linear two-stage least squares (Amemiya, 1974). However, this method has limitations

in its application to the analysis of case-control and cohort studies.

Two examples of Mendelian randomization studies reporting instrumental variable analy-

sis of binary outcomes are given by Davey Smith et al. (2005a) and Qi et al. (2007). Both

of these studies used the user written Stata program qvf (Hardin & Carroll, 2003a) (QVF:

quasilikelihood and variance function). However, the estimator implemented in this pro-

gram was proposed to use instrumental variables to correct for measurement error and it

has not been demonstrated that it is the optimal method for a Mendelian randomization

analysis (Carroll et al., 1995, Chapter 5), and unusually for a user-written Stata program

the source code is not available.

The first section of this chapter explains the method of two-stage least squares, the cor-

rection that is required to the standard errors at the second stage and the method of

non-linear two-stage least squares. The next section outlines an adjusted estimator for

binary outcome studies that is described as an instrumental variable estimator because it

follows the control function approach. The expected parameter values from the adjusted

and two other estimators are discussed in terms of the theory relating marginal and condi-

tional parameter estimates from generalized linear mixed models (GLMMs). The adjusted

IV estimator is also discussed in terms of causal inference and in particular with respect

to Pearl’s back-door criterion and the literature on adjusting for non-compliance in RCTs.
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3.2 Two-stage least squares

This section outlines the derivation, following Cameron & Trivedi (2005), of the two-stage

least squares approach for continuous outcome variables and the correction required to

the standard errors of the parameter estimates. This theory is relevant because it informs

subsequent discussion about the adjusted IV estimator.

Denoting a continuous outcome variable Y , phenotype variable X and instrumental vari-

able Z, where these are (n × 1) vectors where n is the number of observations. In two

stage least squares interest lies in recovering the parameter β from (iid : independent and

identically distributed),

yi = βxi + νi, νi
iid∼ N(0, σ2), i = 1 . . . n. (3.1)

Typically parameters could be estimated using ordinary least squares (OLS). The moti-

vation for the instrumental variable approach comes from the situation where the xi and

νi are correlated. In this situation the OLS estimate of β, β̂, is biased because,

β̂ = β +

∑
i xiνi∑
i x

2
i

. (3.2)

For the above expression when X and ν are uncorrelated the OLS estimator is unbiased

and consistent, when X and ν are correlated the OLS estimator is biased and inconsistent.

Taking expectations conditional on the instrumental variable z gives,

E(Y |Z) = βE(X|Z) + E(ν|Z) (3.3)

which implies that,

β̂IV = β +

∑
i ziνi∑
i zixi

. (3.4)

As Z and ν become independent as the sample size increases, therefore instrumental

variable estimators are consistent for valid instrumental variables.
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3.2.1 Econometric instrumental variable conditions

It should be noted that one of the ‘core’ conditions for an instrumental variable is defined

slightly differently in econometrics. In Chapter 1 the first condition for a variable to be an

instrument was expressed as: the instrument must be associated with the phenotype, or

that the instrument is correlated with the phenotype, i.e. cov(Z, X) 6= 0. In econometrics

the preferred way to express this condition is that the instrument should be partially

correlated with the phenotype (Wooldridge, 2002, page 84). In econometrics the conditions

for Z to be an instrumental variable are given as:

(i) cov(zi, νi) = 0,

(ii) α 6= 0 where xi = αzi + ei with E(ei) = 0.

The second condition here is the equivalent of the first condition from Chapter 1. This

econometric form of the condition is the reason it is possible to include other exogenous

variables in both stages stage of the two stage least squares procedure (Baltagi, 1998,

p 278). As given here the first condition is not testable because the error term, ν, is

unobserved whereas it is possible to test the second condition.

3.2.2 Derivation of the two-stage least squares estimator

The first stage of two-stage least squares regresses the phenotype, X, on the instrument,

Z, to generate the predicted values of the phenotype X̂. At the second stage the disease

outcome, Y , is regressed on the predicted levels of the phenotype X̂. Given that Z

fulfills the conditions to be an instrumental variable, the system of equations defined by

Equation 3.1 and condition (ii) above is identified because β can be expressed in terms of

the expectations of the other variables.

To follow Wooldridge (2002), writing Equation 3.1 in matrix form and then multiplying
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through by Z and taking expectations gives,

E(Z ′Y ) = βE(Z ′X), (3.5)

which has a unique solution if and only if E(Z ′X) has full rank. The solution is given by,

β =
(
E(Z ′X)

)−1
E(Z ′Y ) (3.6)

β̂ = (Z ′X)−1Z ′Y (3.7)

=
(Z ′Z)−1Z ′Y

(Z ′Z)−1Z ′X
.

Which can immediately be recognised as the Wald estimator, or ratio of coefficients ap-

proach. Replacing E(Z) = X̂ gives,

β̂ = (X̂ ′X)−1X̂ ′Y, (3.8)

which is the two stage least squares estimator, where,

X̂ = Z(Z ′Z)−1Z ′X (3.9)

In econometrics the matrix, P , is called the projection matrix where P = Z(Z ′Z)−1Z ′

and therefore,

X̂ ′X = X ′PX = (PX)′PX = X̂ ′X̂ (3.10)

and hence Equation 3.6 becomes,

β̂ = (X̂ ′X̂)−1X̂ ′Y (3.11)

which is the expression that would be expected given the name two stage least squares.

The two stage least squares estimate is consistent which means it converges in probability

to the true value. However, a finite sample bias may occur when the instrument is weak

or when the instrument is not strictly independent of the error terms in Equation 3.1.
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3.2.3 Correction of the standard errors

After the second stage of estimation in two-stage least squares the standard errors of the

parameter estimates need to be corrected because predicted values of X, X̂, were used

in the second stage rather than observed values (Wooldridge, 2002, page 91). This was

shown graphically by Thomas et al. (2007, Figure 1) who plotted the gene-disease outcome

(y-axis) versus the gene-phenotype outcome (x -axis) and showed the need for error bars

in both dimensions. Wiggins (2000) explains that the correction to the standard errors

applies the correct mean squared error to the variance-covariance matrix of the two-stage

least squares parameter estimates. Indeed that the variance-covariance matrix of the

parameter estimates from the second stage of two-stage least squares needs adjustment

was noted by Pagan (1984, top of page 227).

Further, following Wooldridge (2002, page 95) there is an important difference between

the residuals from the second stage regression, νi, and what are known as the two-stage

least squares residuals, denoted ν̂i. The two-stage least squares residuals are not just

the predicted values of the residuals from the second stage regression. The second stage

residuals use the predicted values of X whereas the two-stage least squares residuals use

the observed values of X such that,

νi = yi − x̂iβ̂, (3.12)

ν̂i = yi − xiβ̂. (3.13)

Following Baltagi (1998, page 280), Wiggins (2000) and Wooldridge (2002, pages 139–141)

an estimator of the asymptotic variance-covariance matrix of β̂ is given by,

Ŝ = σ̂2

(
n∑

i=1

x̂′
ix̂i

)−1

. (3.14)
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where σ2 is the variance of the νi and σ̂2 is given by,

σ̂2 =
1

n − k − 1

n∑

i=1

ν̂2
i , (3.15)

where k is the number of instrumental variables. In fact it is debatable whether a degrees

of freedom correction should be made to this variance since the results for IV estimation

are asymptotic. So alternatively n could be used as the denominator, however the above

form is conservative and hence generally preferred.

Baum (2006, p189) states that inferences drawn using the second stage residuals ν will

be inconsistent since the predicted values of the phenotype X̂ are not true explanatory

variables. A full mathematical explanation of this is given by Greene (2008, p317–319)

who states that estimates of σ2 based on ν̂ are consistent since if,

ν̂ = Y − Xβ̂ (3.16)

= Y − X(Z ′X)−1Z ′Y (3.17)

=
(
I − X(Z ′X)−1Z ′) ν (3.18)

then,

σ̂2 =
ν̂ ′ν̂

n
(3.19)

=
ν ′ν

n
+

ν ′Z

n

(
X ′Z

n

)−1(X ′X

n

)(
Z ′X

n

)−1(Z ′ν

n

)
− 2

(
ν ′X

n

)(
Z ′X

n

)(
Z ′ν

n

)
.

(3.20)

and the second and third terms in the above expression converge to 0 since,

plim

(
Z ′ν

n

)
= plim

(
Z ′Y

n

)
− plim

(
Z ′Xβ

n

)
= 0, (3.21)

where plim() denotes converges in probability to. Convergence in probability means that

for a sufficiently large sample size there is a very high probability that the term in the
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brackets will be a certain value and a consistent estimator is one which converges in

probability to its true value. Therefore, σ̂2 based on ν̂ is consistent. This also concurs

with Davidson & MacKinnon (2004, p324) who state that the estimators of σ2 based on

the different residuals are not asymptotically equivalent and that the unadjusted residuals

do not tend to the true IV residuals as the sample size increases. The correction to the

standard errors of two-stage least squares estimates is used in the tsls function in the sem

package in R (Fox, 1979, 2008) and in the ivregress and ivreg2 commands in Stata.

3.2.4 Murphy-Topel standard errors

Murphy & Topel (1985) proposed a correction to the covariance matrix of the parameter

estimates after the second stage of a two-stage modelling procedure in which the first stage

model is linked to the second stage model. The rationale for this correction is the same

as the correction applied to the standard errors after the second stage of two-stage least

squares in that they argued that the second stage estimate of the covariance matrix of the

parameter estimates needs to be corrected for the variability in the predicted values of the

phenotype incorporated in the second stage.

The Murphy-Topel correction to the standard errors of a two-stage modelling process

has been described by Hardin (2002) and implemented in the user-written command qvf

(Hardin & Carroll, 2003a,b). The calculation of Murphy-Topel standard errors for two-

stage models using standard statistical software has also been described by Hole (2006)

who demonstrated a simplified procedure to calculate the Murphy-Topel variance covari-

ance matrix of a two stage model for the following pairs of models used at the first and

second stages respectively; logistic-Poisson, logistic-probit, probit-Poisson, linear-Poisson,

logistic–negative-binomial. It can also be noted that since the third edition of his text-

book Greene (2008) has noted that the Murphy-Topel covariance matrix is the asymptotic

covariance matrix of two-stage maximum likelihood models.

The Murphy-Topel correction to the variance-covariance matrix of the second stage pa-

rameter estimates is complex and involves the first stage model’s score function evaluated
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at the first stage parameter estimates. Hardin (2002) notes that the Murphy-Topel covari-

ance matrix has a similar form to the sandwich estimate of the second stage covariance

matrix since two-stage models are a special case of partial M-estimators (Binder, 1983;

Huber, 1967; Stefanski & Boos, 2002). The correction effectively results in an inflation of

the second stage standard errors which is affected by the functional form of the first stage

model. In particular, if linear regression is used for the first stage model then the Murphy-

Topel correction inflates the standard error of all the second stage parameter estimates by

the same factor, which is not the case for other models used at the first stage.

3.2.5 Weak instruments

Lawlor et al. (2008d, Section 4.10) note that investigating weak instruments using the

F < 10 condition requires careful interpretation. This is because for a first stage regression

with a single instrument an F = 10 implies a P = 0.0015 for the t-test of the coefficient

on the instrument. Hence, for a single instrument there is a range, 0.0015 < P < 0.05 for

which the instrument is statistically significant in the first stage but yet still weak.

Indeed Staiger & Stock (1997) note that F < 10 may not be conservative enough if there

are many more instrumental variables than intermediates. And if the instruments are

weak but there are no other variables available to use then Mikusheva & Poi (2006) and

Andrews et al. (2007) argue that it may be more appropriate to use estimation methods

such as limited information maximum likelihood (LIML) which may have better finite

sample properties.

The problem with weak instruments is that the parameter estimate can be biased and also

that the associated standard error can be larger than the ordinary least squares regression,

whose parameter estimate is also biased. Therefore, Wald tests of βIV can be wrong. In

finite samples for weak instruments βIV may not be centred of the true value of β even

though βIV may be a consistent estimator. How large the sample size should be before

the finite sample bias is negligible does not have a simple answer.
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In particular, when are many weak instruments heuristically it might be assumed that

using all available instruments should provide the most efficient instrumental variables

estimate. However, in practice this may not be the case since the finite sample bias of the

instrumental variables estimate can increase with the number of instruments. In the case

where there are more instruments than intermediates the Hansen test can be performed to

test the validity of these over-identifying instruments (Cameron & Trivedi, 2009; Hansen,

1982). When performing this test the instrumental variables estimate should be estimated

using the generalized method of moments technique.

Additionally, when the IV assumptions hold assuming a continuous outcome measure it

can be shown that the correlation between the instrument and phenotype is given by

(Martens et al., 2006),

|ρZ,X | =

√

1 −
ρ2

X,ν

ρ2
ν,ε

. (3.22)

This implies that there is a limit on the strength of the instrumental variable and that the

strength of the instrumental variable decreases as the variance of the error term increases.

3.2.6 Non-linear two stage least squares

The theory for two-stage least squares regression has been generalized to allow the recovery

of the instrumental variable estimate when there is a non-linear association between the

phenotype and the outcome. This is referred to as the non-linear two-stage least squares

approach (Amemiya, 1974; Bowden & Turkington, 1981). This method is appropriate for

the situation when there is a non-linear function of the phenotype in the second stage

regression. For example to follow Cameron & Trivedi (2005, page 198–199) the non-linear

two-stage least squares approach can recover a consistent estimate of β in the following

system of equations,
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xi = αzi + εi, εi ∼ N(0, σ2
ε ) (3.23)

yi = g(Xβ) + νi, νi ∼ N(0, σ2) (3.24)

where g() is some non-linear function.

Similarly to two-stage least squares, the standard errors of the parameter estimates at

the second stage of non-linear two-stage least squares should be corrected using a similar

correction to that discussed in Section 3.2.3.

However, in the non-linear two-stage least squares approach does not appear to be ap-

propriate for binary or categorical outcomes since the variability is not modelled in terms

of the probability of the different categories of the outcome variable because the outcome

measure is still assumed to be continuous. Therefore, different approaches to non-linear

two stage least squares are investigated in the next section.

3.2.7 Generalised Method of Moments

The moment conditions are based around the assumption that the instrument (Z) should

be independent of the error term in the association between the phenotype (X) and the

disease (Y ). Where h() is the inverse link function of the corresponding generalised linear

model the GMM moment conditions as given by Johnston et al. (2008) are formed by

assuming,

Y = h(X ′β) + ε, (3.25)

where E(ε) = 0. Then the moment condition is given by,

E (Zε) = 0

⇒ E
(
Z(Y − h(X ′β))

)
= 0. (3.26)
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Therefore, for a log-link the GMM moment condition is given by,

E
(
Z(Y − exp(X ′β))

)
= 0. (3.27)

Due to the functional form of ε in Equation 3.25 these moment conditions are sometimes

referred to as additive moment conditions. For the GMM equivalent of Poisson regression

an alternative to the additive GMM moment condition has been proposed by Mullahy

(1997). Mullahy’s moment condition is termed as a multiplicative moment condition

because it assumes that there is an exponentially distributed error term that therefore has

an additive effect in the linear predictor. The multiplicative moment condition of Mullahy

(1997) is derived for the log link by dividing Equation 3.25 by exp(X ′β) so,

Y exp(−X ′β) = 1 + ε exp(−X ′β)

⇒ ε exp(−X ′β) = Y exp(−X ′β) − 1. (3.28)

It is this term, U = Y exp(−X ′β) − 1, that is then used as the residual in the moment

condition such that,

E(ZU) = 0 (3.29)

⇒ E
(
Z(Y exp(−X ′β) − 1)

)
= 0 (3.30)

⇒ E

[
Z

(
Y − exp(X ′β)

exp(X ′β)

)]
= 0. (3.31)

Windmeijer & Santos Silva (1997) argued that if X is endogeneous then either E(ZU) = 0

or E(Zε) = 0, however these statements cannot both be true. The implication of this is

that the argument in the second half of Johnston et al. (2008, Appendix A) in which the

multiplicative moment condition is approximated by a Taylor series expansion and shown

to be approximately equivalent to the additive moment condition may be misleading for

some situations. The multiplicative moment condition has recently been implemented in a

user written program for Stata called ivpois (Nichols, 2007b). This moment condition is
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closely related to the structural nested mean models approach of Hernán & Robins (2006)

and its use would estimate a causal relative risk parameter for a cohort study.

An approach to estimate β from these moment conditions is to minimize the squared

moment condition using a Newton-type algorithm.

3.3 Statistical models for a binary outcome Mendelian ran-

domization study

This section outlines three estimators for use with a binary outcome Mendelian random-

ization study. The three estimators are termed direct, standard IV and adjusted IV. The

direct estimator is the conventional epidemiological approach, the second is the estimator

that might be used following the principle of two-stage least squares using an appropriate

GLM at the second stage and the third is an adjustment to this. The work in this section

and the simulation results in the next chapter are described in Palmer et al. (2008a) which

is included at the end of the thesis.

3.3.1 Estimators for Mendelian randomization studies with binary re-

sponses

The key variables in describing the Mendelian randomization model are; the disease status

Y , intermediate phenotype X, genotype G and confounder U . The assumed relationship

between these variables is shown in Figure 3.1.

For the ith subject in a cohort let: yi represent the binary disease status, pi represent the

probability of having the disease, xi represent the level of the biological phenotype and gi

represent the genotype, which is coded 0, 1 and 2 to indicate the number of copies of the

relevant risk allele. Typically there will be many unmeasured confounders, so it is assumed

that they can be represented by a single variable, U , that captures their combined effect.

This confounding variable is arbitrarily assumed to be standardised to have a mean of
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zero and a standard deviation of one. For simplicity, an additive effect of the genotype

on the intermediate phenotype is assumed, although the following arguments would apply

equally to any known mode of inheritance. It is also assumed that the confounder acts

additively in the linear predictors of the associations between the genotype and phenotype

and between the phenotype and the disease.

The coefficients in the regression of phenotype on genotype are denoted by α’s so that,

xi = α0 + α1gi + α2ui + εi, with εi ∼ N(0, σ2
ε ), (3.32)

and ε represents the effects of measurement error and unmeasured factors that are not

confounders because they do not influence disease. The coefficients in the linear predictor

between phenotype and disease are denoted by β’s, so that the disease status follows a

Bernoulli distribution,

yi ∼ Bern(pi), with log
pi

1 − pi
= β0 + β1xi + β2ui. (3.33)

Implicit in the notation is the idea that εi and ui are independent of one another. The

primary interest in this framework is to recover the phenotype-disease log odds ratio, β1.

U
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Figure 3.1: The relationship between the variables (η is the linear predictor of the logistic
regression).

If both regressions were linear, ignoring the confounder in the instrumental variable anal-

ysis would not bias the estimate of β1 although it would change β0, but this is not the case
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for a non-linear relationship between phenotype and disease (Didelez & Sheehan, 2007b).

Substituting the formula for xi in Equation 3.32 into the logistic regression in Equation

3.33 gives,

log
pi

1 − pi
= β0 + β1(α0 + α1gi + α2ui + εi) + β2ui. (3.34)

The coefficient of gi in this relationship is β1α1 while the coefficient of gi in the linear

regression in Equation 3.32 is α1. In principle the ratio of the estimates of these coefficients

should give an estimate of β1 (Thomas & Conti, 2004), which is the effect of the phenotype

on disease risk after adjusting for confounding. Unfortunately ui and εi are unknown, so

the estimate of β1α1 is taken from the logistic regression without those terms, thus in

effect replacing the true conditional model with a marginal model which averages over the

unknown terms, ui and εi.

An alternative to the ratio estimate of β1 is obtained by taking the predicted values of the

intermediate phenotype from the first regression ignoring the confounding,

x̂i = α̂0 + α̂1gi ≈ α0 + α1gi (3.35)

and substituting those into the logistic regression in (3.33), in which case,

log
pi

1 − pi
≈ β0 + β1(x̂i + α2ui + εi) + β2ui. (3.36)

In this two-stage approach the estimate of interest is just the coefficient of the predicted

phenotype x̂i, but the biases will be similar to those that occur for the ratio estimator.

In an attempt to correct for this difference between marginal and conditional parameter es-

timates, and thus improve upon the standard instrumental variable estimator an adjusted

IV estimator is applied. The estimated residuals from the first stage linear regression in

Equation 3.32 are,

ri = xi − x̂i. (3.37)

These estimated residuals capture some of the variability contained in the unknown con-
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founder, ui, and the phenotype error term, εi. This information can be used in the second

regression by fitting,

log
pi

1 − pi
= β0 + β1x̂i + βrri. (3.38)

The information about the confounding contained in the residuals should, in part, com-

pensate for the missing terms in the marginal form of the logistic regression model and

therefore reduce the difference between the conditional and marginal estimates of β1.

Three estimators of β1 are considered, first the direct estimator, that does not use Mendelian

randomization but performs a logistic regression of disease status on the intermediate as in

a traditional epidemiological study. The direct estimator of β1 is derived from the logistic

regression of the disease status variable on the phenotype,

log
pi

1 − pi
= β0 + β1xi. (3.39)

The standard IV estimator uses Mendelian randomization and is the logistic regression of

the disease status on the predicted phenotype,

log
pi

1 − pi
= β0 + β1x̂i. (3.40)

The third estimator is the adjusted IV estimator obtained from the logistic regression of

the disease status on the predicted phenotype and the first stage residuals as in Equation

3.38.

3.3.2 Wooldridge’s procedure 15.1

Procedure 15.1 of Wooldridge (2002, page 274) which is the two-stage conditional maxi-

mum likelihood procedure of Rivers & Vuong (1988) is essentially the same as the adjusted

IV estimator described above except that the observed values of the phenotype are used

instead of the predicted values. These authors also used a probit regression at the second

stage, replacing this with a logistic regression the second stage of procedure 15.1 takes the
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following form;

log
pi

1 − pi
= γ0 + γ1xi + γ2ri (3.41)

= γ0 + γ1x̂i + (γ1 + γ2)ri. (3.42)

Comparing this formulation with the adjusted IV estimator gives,

γ1 = β1 (3.43)

γ2 = βr − β1. (3.44)

Wooldridge (2002) states that the usual t-statistic testing the null hypothesis that γ2 = 0

is a valid test of the presence of confounding. The equivalent test for the adjusted IV

estimator is therefore a test of the null hypothesis that β1 = βr.

The use of the first stage residuals was also suggested by Nitsch et al. (2006) who com-

mented that,

Another, equivalent way to obtain IV estimates is to save the residuals from

the regression of X on Z and then include them in the regression of Y on X.

Such residuals act as unbiased estimates of the unmeasured confounders in U

and therefore lead to unbiased estimates of the causal effect from X to Y only

if the regression model for the regression of X on Z is appropriately specified,

however. If it is not, biased estimates will be obtained.

3.4 Theoretical values of the three estimators

This section describes the theoretical values of the parameters from the direct, standard

IV and adjusted IV estimators. Firstly, as background the parameter estimates from a

threshold model are discussed.
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3.4.1 Parameter estimates from Maddala’s threshold model

Maddala (1983, page 244) considers a system of two linear structural equations, the second

outcome variable of which is observed as dichotomous, subject to the original continuous

outcome exceeding some threshold (i.e. Y is observed as 1 if the value of the linear

predictor exceeds a certain value and 0 otherwise). Maddala notes that from this two-stage

estimation procedure the estimates from the second equation are the true parameter values

divided by the standard deviation of the error terms from the second equation. Wooldridge

(2002) also notes that the parameter estimates from procedure 15.1, as described in Section

3.3.2, are scaled by the square root of a residual variance term.

3.4.2 Theory from GLMs with random coefficients

To investigate the theoretical values of the three estimators the theory relating popula-

tion and subject specific parameter estimates in generalised linear models with a random

intercept, a form of generalised linear mixed model (GLMM), is relevant. This is because

in each of the three estimators some terms are omitted with respect to the full model and

these omitted terms act as a random effect. With respect to the full model for the direct

estimator the confounder is omitted, for the standard IV estimator the confounder and the

phenotype error term is omitted and for the adjusted IV estimator the phenotype error

term is omitted.

In the following the subject specific, or conditional, parameter estimate is denoted by βc

and the population averaged, or marginal, parameter estimate is denoted by βm. The

relationships between marginal and conditional parameter estimates for generalized linear

models with a normally distributed random intercept were given by Zeger et al. (1988).

These relationships can be described as follows; for models with an identity link function

the marginal and conditional parameter estimates are the same. For models using a log

link, such as Poisson regression, the marginal intercept is offset but the other coefficients in

the linear predictor are identical. For models with probit and logit links all the parameters
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in the linear predictor are attenuated towards the null effect. For the logit link, assuming

the random effects are normally distributed, this relationship can only be approximated

and is given by,

βm ≈ βc
1√

1 + c2V
, with c =

16
√

3

15π
, (3.45)

where V is the variance of the random effect, or for the three estimators described here

the variance of the terms over which the subject specific data is averaged to produce

the marginal estimates. The derivation of these relationships between marginal and con-

ditional parameter estimates for GLMs with a random intercept are explained in more

detail in Appendix B.

Therefore, to apply Equation 3.45 it is necessary to derive V for each of the three estima-

tors. First, the logistic regression for the association between the phenotype and disease is

approximated as a linear regression of the log odds ratio, η = log(p/(1−p)) on the covari-

ates and confounders (Thomas et al., 2007). If the terms included in the linear predictor

of the logistic regression are denoted by T then the remaining variance after allowing for

these terms will be given by,

V = var(η|T ) = var(η) − cov(η, T )2

var(T )
(3.46)

since η and T can both be assumed to be normally distributed (Anderson, 1958). From

Equation 3.34,

ηi = β0 + β1α0 + β1α1gi + (β1α2 + β2)ui + β1εi (3.47)

and because u is standardised, it follows that

var(η) = (β1α1)
2var(g) + (β1α2 + β2)

2 + β2
1σ2

ε (3.48)

and var(g) is 2q(1 − q) where q is the minor allele frequency.
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3.4.3 The direct estimator

The direct estimator performs a logistic regression of disease on the intermediate pheno-

type. In this case T = xi where,

xi = α0 + α1gi + α2ui + εi (3.49)

so,

var(T ) = α2
1var(g) + α2

2 + σ2
ε . (3.50)

The covariance between the log odds and the terms in the linear predictor is given by,

cov(η, T ) =

[
α1 α2 1

]
·





var(g) 0 0

0 1 0

0 0 σ2
ε




·





β1α1

β1α2 + β2

β1





= α2
1β1var(g) + α2(β1α2 + β2) + β1σ

2
ε . (3.51)

Hence for the direct estimator Vdirect can be formed using Equations 3.48, 3.51 and 3.50.

3.4.4 The standard IV estimator

For the standard IV estimator the log odds are regressed on the fitted values from the

linear regression of the phenotype on the genotype. Thus T ≈ α0 + α1g and,

var(T ) = α2
1var(g) (3.52)

cov(η, T ) = α2
1β1var(g). (3.53)
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Hence for the standard IV estimator V is given by,

Vstandard = (β1α2 + β2)
2 + β2

1σ2
ε . (3.54)

3.4.5 The adjusted IV estimator

The adjusted IV estimator makes use of the estimated residuals, r, from the regression

of the phenotype on genotype to capture some of the variance explained by confounding

variables not included in the standard IV estimator. Therefore the value of V is reduced

compared with the standard IV estimator. For the adjusted IV estimator V is given by,

V = var(η|T ) − cov(η|T, r)2

var(r)

= var(η) − cov(η, T )2

var(T )
− cov(η|T, r)2

var(r)
. (3.55)

If the confounder U is standardized the estimated residuals and their variance are given

by,

ri = α2ui + εi (3.56)

var(ri) = α2
2 + σ2

ε (3.57)

The covariance between the log odds given the phenotype information and the estimated

residuals is given by,

cov(η|T, r) =

[
β1α2 + β2 β1

]
·




1 0

0 σ2
ε



 ·




α2

1



 (3.58)

= α2(β1α2 + β2) + β1σ
2
ε . (3.59)
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Since var(η|T ) = Vstandard from the standard IV estimator above, for the adjusted IV

estimator,

Vadjusted = (β1α2 + β2)
2 + β2

1σ2
ε − (α2(β1α2 + β2) + β1σ

2
ε )

2

α2
2 + σ2

ε

. (3.60)

Hence it is possible to apply Equation 3.45 for all three estimators. These expressions

are tested through simulation in the next chapter. The theory given here is similar to

the theory for the ivprobit program in the Stata manual (Stata Corp, 2007). The Stata

manual used a simplified form of the first stage regression which allows the V term to be

expressed as the correlation between the instrument and the phenotype.

3.5 Causal inference for the adjusted IV estimator

This section outlines rationale for the adjusted IV estimator from the causal inference and

clinical trials literature.

The adjusted IV estimator uses the estimated residuals as well as the predicted values

from the first stage regression of the genotype on the phenotype as covariates in the

second stage logistic regression between the phenotype and the disease outcome. This

estimator was introduced in the context of using instrumental variable analysis to correct

for non-compliance in clinical trials (Nagelkerke et al., 2000).

In clinical trials treatment randomization can be used as an instrumental variable to

control for confounding in the intention-to-treat (ITT) analysis caused by non-compliance

of subjects to their randomized treatment. The use of treatment randomization in this

way is described as the estimation of ‘treatment efficacy’ or estimating the ‘effects of the

treatment received’. This estimate differs from both ITT and per-protocol analyses, and

has been referred to as the adjusted treatment received (ATR) estimate or the IV(ATR)

estimate (Dunn & Bentall, 2007; Nagelkerke et al., 2000).

It should be noted that Dunn & Bentall (2007) attributed the adjusted IV estimator to
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Hausman (1978). Specifically Hausman (1978, Equation 2.18) describes the use of the

first stage residuals in the second stage regression but its implications are not discussed

for non-continuous outcome measures and the paper is complex.

3.5.1 Back-door paths on DAGs and Pearl’s back-door criterion

Graphs as used in causal inference, and in particular DAGs were defined in Section 1.5.

Graphical assumptions are qualitative and non-parametric because they do not imply the

specific functional form of the relationships between the variables. A marginal association

between two variables in a graph requires that there is an unblocked path between them.

In a DAG there are only two kinds of unblocked path, directed paths and back-door paths

through a shared ancestor. Therefore a marginal association between two variables in a

DAG requires that there is either a causal pathway from one to the other or that they

share a common cause. Confounding can be shown on a DAG if there is an unblocked

path between an phenotype and an outcome that is not direct. In econometric terms a

variable is endogenous if it has an arrow into it otherwise it is an exogenous variable.

G X Y

U

Figure 3.2: Typical DAG representing the use of genotype as an IV in a Mendelian ran-
domization analysis, the genotype, phenotype, confounder and disease outcome variables
are represented by G, X,U and Y respectively.

Figure 3.2 shows the DAG for a Mendelian randomization analysis using the genotype as

an instrumental variable. This figure has appeared in Hernán & Robins (2006); Lawlor

et al. (2008d); Thompson et al. (2003) and Didelez & Sheehan (2007b) and is the typical

DAG used to represent an instrumental variable analysis. Valid instruments for the effect

of X on Y can be used to test the null hypothesis that X has no effect on Y .

The first stage residuals contain some information about the unmeasured confounder since

they capture the variance in the phenotype that is not explained by the genotype. It has
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been argued that the first stage residuals satisfy Pearl’s back-door criterion (Nagelkerke

et al., 2000), which would mean that the adjusted IV estimate of β1 would have a causal

interpretation.

A back-door path on a DAG from X to Y is a path which begins at X and whose first edge

has an arrow pointing into X, the path should then end at Y (Greenland & Brumback,

2002). In Figure 3.2 the path X −U − Y is a back-door path from X to Y . Following the

notation of Nagelkerke et al. (2000), a variable E satisfies the back-door criterion of Pearl

(1995) relative to an ordered pair of variables (X, Y ) in a DAG if;

(i) no node in E is a descendant of X, and

(ii) E blocks every path between X and Y which contains an arrow into X.

Hence an arrow between E and X must point into X and in the case of Figure 3.2 E

must block the path between X and U . Figure 3.3(a) shows the DAG for the adjusted

IV estimator. It can be seen that the first stage residuals E satisfy Pearl’s back-door

criterion since they are a parent of X and block the path between X and U . The first

stage residuals only satisfy the back-door criterion if G is a valid instrument since there

must be no direct path between G and Y except through X. It is also important that U

is a true confounder of the X − Y relationship and not for example an effect modifier of

Y (Nagelkerke et al., 2000).

The DAG in Figure 3.3(a) has been reproduced by Dunn et al. (2005, Figure 2) and

Keogh-Brown et al. (2007, Figure 34) from the original by Nagelkerke et al. (2000). Figure

3.3(b) shows the DAG after conditioning on the first stage residuals E. It shows that after

conditioning there is only one edge connecting X and Y and hence the association between

X and Y is no longer confounded.

In fact the DAG in Figure 3.3(a) and its corresponding moral graph have been drawn in

the context of Mendelian randomization (Didelez & Sheehan, 2007a, Figure 1.3). These

authors comment that in order to identify the average causal effect of X on Y that only

one of U or E need be adjusted for in the analysis. This argument follows Dawid (2002),
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G X Y

U

E

(a) DAG for the adjusted IV estimator.

G X Y

U

(b) DAG after conditioning on E.

Figure 3.3: DAGs for the adjusted IV estimator adapted from Figures 1 and 2 of Nagelkerke
et al. (2000). E represents the first stage residuals.

who argues it is only necessary to adjust for one of two related confounders.

It has been argued that the first stage residuals could be used in conjunction with many of

the commonly used statistical models at the second stage of the analysis including linear,

Poisson, logistic, probit and Cox regression models (Nagelkerke et al., 2000). Dunn &

Bentall (2007) also commented on the significance test mentioned by Wooldridge for the

presence of confounding that is obtained from a test of the significance of parameter esti-

mate from the first stage residuals. It is the case that if there are other known confounders

they should be adjusted for at both stages of the standard IV and adjusted IV estimators,

which is referred to in econometrics as including other exogenous variables at both stages

of the analysis.

3.6 Discussion

This chapter has explained the econometric methods of two-stage least squares and non-

linear two-stage least squares and that alternative methods are required for the analysis

of case-control and cohort studies applying Mendelian randomization.

The adjusted IV estimator partially compensates for the unknown confounding factors by
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exploiting information from the residuals of the regression of the intermediate phenotype

on the genotype. The adjusted IV estimator is an alternative to other estimators termed

direct and standard IV. The adjusted estimator is essentially equivalent to procedure 15.1

of Wooldridge (2002), and the theory used to explain the parameter estimates relates to

the threshold model of Maddala (1983).

It is argued that for the direct estimator the confounder and additionally for the IV

estimators the variability in the phenotype acts as a random effect and causes attenuation

in the estimate of the phenotype-disease association β1 that is analogous to the difference

between marginal and conditional parameter estimates in generalized linear models with

a random intercept (Breslow & Clayton, 1993; Zeger et al., 1988). These formulae could

be used to perform a sensitivity analysis under hypothesised levels of the unmeasured

confounding. This point is analogous to the way the reliability ratio can be applied to

parameter estimates from measurement error models whose parameter estimates are also

attenuated (Carroll et al., 2006, Chapter 3).

The adjusted IV estimator uses the first stage residuals to make the marginal likelihood of

the model approximate the conditional likelihood of the underlying fully specified model.

In this sense the adjusted IV estimator could be described as pseudo-conditional estimator.

The formulae for approximating this difference for the three estimators are assessed in the

next chapter through simulations.
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An adjusted instrumental variable

estimator: simulation study

4.1 Introduction

This chapter compares the properties of the direct, standard IV and adjusted IV estimators

introduced in the previous chapter through a simulation study. Interest lies in assessing

the bias and coverage of the estimators and the type I error of their respective significance

tests.

4.1.1 Data simulation

In a cohort of 10,000 individuals, each individual was randomly assigned two alleles of a

diallelic genetic variant (e.g. a SNP which has two alleles) in Hardy-Weinberg equilibrium.

The allele frequency of the risk allele set to 30%. The confounding variable, U , was

simulated to be normally distributed with mean 0 and variance equal to 1, ui ∼ N(0, 1).

The phenotype, X, was generated as a Normal random variable with mean equal to,

α0 + α1gi + α2ui following Equation 3.32, and the standard deviation of the phenotype

error term, σε, was set to 1. Each subject’s probability of disease was simulated, following
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Equation 3.33 such that log pi

1−pi
= β0 + β1xi + β2ui.

The β0 parameter was set to log(0.05/0.95). Different amounts of confounding were con-

sidered by changing the values of α2 and β2. In particular four confounding scenarios were

considered by setting the confounding effect on the phenotype, α2, to 0, 1, 2 and 3 whilst

the confounding effect on the disease, β2, was varied between 0 and 3 for each scenario.

The other parameters were fixed as follows; α0 = 0, α1 = 1 and β1 = 1. For each set of

parameter values 10,000 simulations were performed. Statistical analysis was performed

using the R software package (version 2.6.1) (R Development Core Team, 2008).

4.2 Simulation results for the logit link

The three estimators are assessed using the median parameter estimates, coverage proba-

bilities and type I error of the Wald test of the phenotype-disease log odds ratio, β1. The

coverage probability of β1 was calculated as the proportion of simulations whose confidence

interval included the true value of β1. A set of simulations was performed with β1 equal

to 0 to represent the situation in which there is no association between phenotype and

disease. For those simulations, the proportion of statistically significant estimates from a

significance test of β1 is an estimate of the type I error of the test.

4.2.1 Bias

The value of β1 was set to 1 in these simulations. Figure 4.1 shows the median of β1 for

the three estimators from the simulations, represented by the symbols, and the values of

the estimators calculated from the formulae given in the previous chapter represented by

the lines.

In Figure 4.1 the median values from the simulations are in good agreement with the the-

oretical predictions using Equation 3.45 from the previous chapter and the corresponding

terms for V for the different estimators. There is the same pattern to the estimates of β1
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Figure 4.1: Simulated and theoretical estimates of β1 for a true value of 1.

for the different values of α2 except when α2 is equal to zero. When α2 is equal to zero the

direct and adjusted estimators are equivalent because in this instance the confounder no

longer affects the phenotype and is therefore no longer a true confounder so the first stage

residuals do not carry any information about the confounder. When α2 is non-zero, allow-

ing the confounder to take effect, the direct estimate of β1 is greater than the set value of

1. However, the effect the unmeasured confounding has on the standard IV estimates is

to bias them towards zero, producing estimates that are always below the true value of 1.

The values of the adjusted IV estimator are between the other two sets of estimates and

have the smallest bias of the three estimators. For the adjusted IV estimates the bias in

β1 reduces with larger values of α2 because in these situations the estimated residuals are

more informative since the confounder has a larger effect on the phenotype.
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4.2.2 Coverage

Figure 4.2 shows the coverage probabilities of the three estimators. The nominal coverage

level was 95% since 95% confidence intervals were derived for the parameter estimates. The

direct estimator and the standard IV estimator demonstrate very low coverage for all four

scenarios due to the bias in the estimates of β1. The adjusted IV estimator demonstrates

the best coverage properties with levels around 95% over the range of values of β2 for

which its estimate of β1 was approximately equal to the set value of 1 in Figure 4.1. The

coverage of the adjusted IV estimator improves as the value of α2 increases because the

bias reduces.
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Figure 4.2: Coverage probabilities of the three estimators.

Figure 4.3 shows the coverage of the three estimators with respect to the marginal value of

βm from the simulations. It shows that the direct estimator has the correct coverage with

levels around 95% and the standard IV also had the expected or greater than expected

levels of coverage. The adjusted IV estimator had the correct coverage levels when the

confounder was not a true confounder and did not have an effect on the risk of disease.
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However, when the confounder acted as a true confounder, in the three panels with α2 6= 0

the coverage of the adjusted IV estimator was less than the expected level of 95% with

respect to βm.
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Figure 4.3: Coverage probabilities of the three estimators with respect to βm.

4.2.3 Type I error

Figure 4.4 shows the type I error of the standard IV and adjusted IV estimators when the

nominal rate is 5%. The type I error of the direct estimator is not shown on Figure 4.4

because the values were above 90% which was caused by the impact of the confounder.

Under the three scenarios with non-zero values of α2 the adjusted IV estimator has a

substantially higher type I error rate than the standard IV estimator because the inclusion

of the estimated residuals in the adjusted IV estimator reduced its estimated standard error

and hence produced larger Z statistics in the Wald test.

That the adjusted IV estimator produces incorrect type I error rates is known in the

econometrics literature. For example, Wooldridge (2002, p 474) states that when the
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Figure 4.4: Type I error rate of the Wald test of β1 for the IV estimators.

confounding is statistically significant then the resulting standard errors and test statistics

for Wooldridge’s equivalent of the adjusted IV estimator are not valid (as discussed in the

previous chapter Wooldridge used a probit regression at the second stage), a point also

noted by Nichols (2007a).

A possible explanation for the elevated type I error rate of the adjusted IV estimator

could be that the Wald statistic for the test of β1 = 0 may have a non-normal sampling

distribution. To investigate this, the 2.5% and 97.5% quantiles of the Z-scores from the

Wald test of β1 are plotted for the standard and adjusted IV estimators in Figure 4.5.

In Figure 4.5 the observed quantiles for the standard estimator were at the expected values

of ±1.96. The quantiles for the adjusted estimator were outside those for the standard

estimator.

The Wald test is an approximation to the likelihood ratio test because it is based on a

quadratic approximation to the log-likelihood (Pawitan, 2001). The type I error of the
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Figure 4.5: 2.5% and 97.5% quantiles of the Z-score for the standard and adjusted IV
estimators.

likelihood ratio test for the estimators is shown in Figure 4.6. The likelihood ratio test of

the standard IV estimator compared it to the null model. To perform the likelihood ratio

test of β1 for the adjusted IV estimator it was compared with a model containing only

the first stage residuals in the second stage. The type I error of the likelihood ratio test

of β1 was also inflated for the adjusted IV estimator when the impact of the confounder

was large as shown in Figure 4.6.

The use of a logistic regression model allowing for over-dispersion at the second stage was

investigated to test whether it would reduce the type I error in the Wald test for the

adjusted IV estimator. GLMs with over-dispersion can be fitted in R for binary outcomes

by using the quasibinomial family option in the glm function. Figure 4.7 shows that

using a logistic regression allowing for over-dispersion at the second stage did not reduce

the type I error of the Wald test of β1.
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Figure 4.6: Type I error rate of the likelihood ratio test for two IV estimators of β1.
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Figure 4.7: Type I error rate of the Wald test for the IV estimators of β1 allowing for
over-dispersion.
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4.2.4 Intercept

The equations relating marginal and conditional parameter estimates also predict that

the intercept in the second stage logistic regression will be shrunk towards the null. As

explained in Appendix B this would also be the case using probit regression at the second

stage. The median of the estimates of β0 from the simulations are shown in Figure 4.8. The

median of the simulated values of the intercept are in good agreement with the theoretical

values.
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Figure 4.8: Theoretical and simulated estimates of β0 with the logit link.

4.2.5 Proportion of variance due to the confounder

Figure 4.9 shows the proportion of variance explained by the confounder in the linear

predictor of the first and second stage regressions. When α2 = 0, 1, 2 and 3, the confounder

accounted for approximately 0, 45, 80 and 90 percent of the phenotype variance. For the

log odds of disease the confounder accounted for between 0 and 90 percent of the variance
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in the linear predictor when α2 = 0 and β2 varied from 0 to 3, between 45 and 90 percent

when α2 = 1, between 80 and 90 percent when α2 = 2 and between 85 and 95 percent

when α2 = 3.
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Figure 4.9: The proportion of variance due to the confounder in the stage 1 and 2 linear
predictors.

4.2.6 Assessment of instrument strength through the first stage R2

The genotype is categorical and in these simulations it is used to predict a continuous

phenotype. It is therefore possible the first-stage regression may have low predictive

power, since under the additive genetic model there are only three levels of the genotype

with which to explain the variability in the phenotype. Under the recessive or dominant

genetic models there are only be two levels of the genotype, so the first stage regression

may explain less of the variability in the phenotype in this instance.

If an instrumental variable has a low F -statistic, typically less than 10, at the first-stage

it is referred to as a weak instrument (Lawlor et al., 2008d; Staiger & Stock, 1997). The
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F -statistic from a linear regression is closely related to the coefficient of determination,

R2, which expresses the proportion of variability in the outcome variable explained by the

regressors. More precisely the F statistic is closely related to the ratio, R2/(1−R2). If the

genotype is a weak instrument it will not a explain a substantial amount of the variability

in the phenotype and will hence report a low first stage R2 and hence a low F -statistic.

Figure 4.10 shows plots of the first stage R2 for the simulations. The value of R2 reduces as

the impact of the confounder, through α2, increases. As α2 increases, and the instrument

becomes weaker, it would be expected that estimators of β1 would demonstrate increased

bias. However, the adjusted estimator does not follow this trend since the bias reduced

as α2 increased in the simulations, which implies that the adjusted IV estimator may be

more robust to the weak instrument problem.
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Figure 4.10: Values of the first stage R2 from the simulations.
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4.2.7 Comparison of the Neuhaus and Zeger equations

The expression given in Equation 3.45 based on that given by Zeger et al. (1988) can be

compared with an expression given by Neuhaus et al. (1991) which is given in more detail

in Appendix B.

The standard IV estimates under the Zeger approximation were compared with the Neuhaus

approximation in Figure 4.11. The approximations are similar and follow the same trend.

A disadvantage of the Neuhaus approximation is that the true probabilities of the outcome

measure are required in the second stage regression. The true probabilities were used in

Figure 4.11 because the data was simulated, however in practice they would not be known

and predictions would have to be used.
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Figure 4.11: The Neuhaus approximation compared with the Zeger adjustment of the
standard IV estimator using the logit link.
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4.2.8 Results for the probit link

When studies are of case-control design there is a strong case to use logistic regression,

however it is interesting to consider the implications for the analysis if a probit regres-

sion were used instead for the three estimators. Therefore, the simulations were repeated

replacing the logistic regressions by probit regressions at the second stage of the estima-

tion procedures and also in the data simulation. The relationship between marginal and

conditional parameter estimates for probit regression with a random intercept is given in

Appendix B.
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Figure 4.12: Theoretical and simulated estimates of β1 with the probit link.

Figure 4.12 shows the median estimated parameter values from the simulations. Again the

theoretical values using the Zeger approximation are in close agreement with the simulated

values and the adjusted IV estimator falls between the other two. However, in this instance

the adjusted IV estimator does not always have the smallest bias of three. For example

in the panel with α1, the direct estimates have the smallest bias. This is perhaps a reason

to prefer logistic over probit regression for Mendelian randomization analyses. The plots
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of the intercept estimates, type I error and coverage all demonstrated the same patterns

as for the logit link and are given in Appendix C.
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4.3 Discussion

This simulation study has evaluated the properties of three estimators of the phenotype-

disease log odds ratio, termed: direct, standard IV and adjusted IV for Mendelian ran-

domization studies with binary outcomes. Under the logit link the adjusted IV estimator

has the least bias of the three in terms of the difference between the estimated parameter

value and the underlying true parameter.

In this modelling framework the effects of the unmeasured confounder and the random

error about the phenotype act as a random effect in the logistic regression between the

phenotype and disease. Hence the difference between the underlying and estimated param-

eter values can be explained in terms of the difference between marginal and conditional

parameter estimates in generalized linear mixed models. Formulae for this difference were

given in the previous chapter and more details about their derivation are given in Ap-

pendix B. These formulae could be used to perform a sensitivity analysis of the size of the

phenotype-disease association after an analysis for different hypothesised amounts of con-

founding. The theory and further simulations show that the difference between marginal

and conditional parameter estimates also exists for the estimators using probit regression

at the second stage.

Despite being the least biased the adjusted IV estimator had high type I error when the

effect of the unmeasured confounder was large. The inflated type I error for the adjusted

IV estimator was observed under the Wald and likelihood ratio tests and the Wald test

using standard errors from logistic regression allowing for over-dispersion. The high type

I error of the adjusted IV estimator may be improved if a correction were applied to the

standard errors of the form as for two-stage least squares and non-linear two stage least

squares detailed in the previous chapter. The need to correct the standard errors of the

adjusted estimator was also demonstrated by the coverage plots which showed low coverage

with respect to the conditional and marginal values of β1. Dunn & Bentall (2007) have

used bootstrapping to obtain standard errors for the adjusted IV estimator in the case of
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a continuous outcome measure and the identity link and Dunn et al. (2005) commented

that bootstrapping may help give correct standard errors for non-linear IV models. The

Wald test of the standard IV estimates had the correct type I error, and it may therefore

be possible to use the standard IV estimator for hypothesis testing and the adjusted IV

estimator for reporting parameter estimates 1.

The unmeasured confounding factors need to act as true confounders. If they act solely on

the phenotype-disease association then the adjusted IV estimator is equivalent to the direct

estimator. In these simulations an additive genetic model was assumed, because a linear

regression was assumed between the phenotype and genotype. The general conclusions

drawn here would also hold for the recessive and dominant genetic models.

The simulations investigated the performance of the estimators over a range of values of

the confounder. Typically the gene used in a Mendelian randomization study will only

explain a small percentage of the variance in the phenotype, perhaps less than 10 percent.

It is therefore plausible that the impact of unmeasured confounding factors could be high,

or indeed the error variance of the phenotype-disease association could be high or that

the variance in the phenotype attributable to other polymorphisms could be high, causing

bias in the parameter estimates of a Mendelian randomization analysis. In the analysis

of a real study if there is information on other covariates which are possibly confounders

they should be included in both stages of the analysis. This is because their inclusion will

reduce the importance of the unmeasured confounders and help to reduce the bias in the

parameter estimates. There could of course be many other determinants of the phenotype

or the risk of disease that would not act as true confounders and which therefore could

not be accounted for by the adjusted IV estimator.

Comparing Figures 4.1 and 4.10 the bias in the adjusted IV estimator reduces as the first

stage R2 decreases across the four values of α2. Therefore, the adjusted IV estimator may

be robust to the weak instrument problem when the weak instrument is caused by a large

effect of the unmeasured confounder.

1This suggestion was made by one of the anonymous reviewers of Palmer et al. (2008a)

87



Chapter 4. An adjusted instrumental variable estimator: simulation study

A weakness of these simulations is that there were instances in which the predicted levels

of the phenotype were perfect predictors for the disease outcome (Venables & Ripley, 2002,

page 197). Fitted probabilities very close to zero or one in binomial GLMs can lead to a

loss in power of the Wald test (Hauck Jr & Donner, 1977).

4.3.1 Practical implications of these simulations

Studies such as Timpson et al. (2005) that have reported Mendelian randomization anal-

yses for continuous outcome measures using two-stage least squares or another of the

equivalent methods are not affected by the results of these simulations. This is because

the adjusted IV estimator with an identity link at the second stage produces equivalent

parameter estimates to two-stage least squares as shown in Appendix C.

Qi et al. (2007) reported a study investigating the effect of plasma interleukin 6 (IL-6) levels

on the risk of type II diabetes risk. The study reported an odds ratio of diabetes of 1.78 per

unit change in log(IL-6) (95% CI: 1.49, 2.10) for the direct association and an odds ratio

of 1.59 per unit change in log(IL-6) (95% CI: 0.45, 5.66) using the qvf command in Stata

to perform instrumental variable analysis. Notably the direct association is statistically

significant but the instrumental variable analysis is not. It is expected that the adjusted

IV estimator would estimate an odds ratio between the direct and qvf estimates that is

also not statistically significant because it is expected that for binary outcomes the qvf

command gives estimates similar to the standard IV estimator in the simulations.

Another binary outcome study applying Mendelian randomization is Davey Smith et al.

(2005a) investigating the association between CRP and hypertension using the 1059G/C

polymorphism in the human CRP gene. The direct odds ratio of hypertension was reported

to be 1.14 per quartile of CRP (95% CI: 1.09, 1.19) whereas the odds ratio using the qvf

command was 1.03 per quartile of CRP (95% CI: 0.61, 1.73). Again it is notable that

the direct estimate is statistically significant and that the instrumental variable estimate

is not. Similarly to the previous example it is expected that the adjusted IV estimate

of the odds ratio would be between the direct and qvf estimates and would also not be
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statistically significant.

Hence, for both binary outcome examples it is expected that the use of the adjusted IV

estimator would change the magnitude of the reported phenotype-disease association but

not the overall conclusions of the instrumental variable analysis.

Table 4.1 shows an analysis on a subset of the data (N=3,597) from Davey Smith et al.

(2005a). This was the same model as cited above and I cannot explain why the qvf

point estimate is different to that cited in the original paper (OR=0.89 versus OR=1.03),

although the confidence intervals are similar. Importantly, the output, including the p-

values, from the standard IV estimator and the qvf command is similar. The adjusted IV

odds ratio is also very slightly larger than that from the qvf command as predicted.

Model OR (95% CI) P-value

Direct 1.1464 (1.0976, 1.1974) <0.001
qvf 0.8931 (0.5098, 1.5648) 0.693
Standard IV 0.8932 (0.5143, 1.5514) 0.689
Adjusted IV 0.8934 (0.5129, 1.5563) NA

Table 4.1: Comparing different estimators in a subset of Davey Smith et al. (2005a).

4.3.2 Further work

In terms of extending these simulations the standard deviation of the phenotype could

also be varied. It is expected that as the phenotype standard deviation increases that the

bias in the estimators would increase.

These simulations used cohort studies so there is an issue how the results would compare

using case-control studies. Comparing the parameter estimates from a logistic regression

of a cohort study and a case-control study only the intercept differs between the two under

the rare disease assumption (Farewell, 1979). In a cohort study the intercept represents

the baseline log odds of disease, whereas in a case-control study, for a rare disease, the

intercept represents the baseline log odds of disease plus the logarithm of the ratio of the

sampling fraction of the cases and controls. Hence it is expected that the results would
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be same for the β1 parameter using case-control studies in the simulations, whilst the

estimates of the intercept would follow the same trend but have slightly different values.

It is important to investigate how to correct the standard error of the adjusted IV estimator

so that its significance tests have the correct type I error. For example, the qvf command

has the option to use Murphy-Topel standard errors (Hardin, 2002; Hardin & Carroll,

2003b; Murphy & Topel, 1985) which could be investigated for the adjusted IV estimator.

Murphy-Topel standard errors were described in section 3.2.4.

4.3.3 Further work II: a scaling factor correction to the standard errors

of the adjusted IV estimator

It is known that the standard IV estimator has the correct type I error, therefore it should

be possible to use the z-statistic of its β1 parameter to adjust the standard errors of the

adjusted IV estimator. Denoting a scaling factor by k and the estimated parameters from

the adjusted and standard IV estimators by βA and βS and their standard errors by sA

and sS , equating z-statistics for β1 we know that,

zAk = zS (4.1)

βA

sA
k =

βS

sS
(4.2)

⇒ k =
βSsA

sSβA
. (4.3)

Hence sA should be multiplied by 1/k to give the correct type I error for the adjusted IV

estimator, or equivalently the corrected standard errors are given by sSβA/βS . When one

of βA or βS is negative this will produce a negative corrected standard error, in order to

avoid this the absolute value should be used.

Figure 4.13 shows the type I error of the adjusted IV estimator using the scaled standard

error for the scenario with α2 = 3. There is an improvement in the type I error over Figure
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4.4 which is now at the nominal value of 5%, the intended outcome of the correction.
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Figure 4.13: Type I error of the Wald test of the adjusted IV estimator using scaled
standard errors for α2 = 3.

Figure 4.14 shows the coverage of the adjusted IV estimator using scaled standard errors

with respect to β1 = 1 (left) and βm (right). Both coverage plots improve upon their

unscaled equivalents in Figures 4.2 and 4.3. However, many of the coverage levels are

above the 95% level which suggests that the correction may have to be used with caution.

A problem with this correction is that it will give corrected standard errors close to 0 when

βA ≈ 0 and very large corrected standard errors when βS ≈ 0. Hence, this correction may

be inappropriate when there is a null effect.
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Figure 4.14: Coverage probability of the adjusted IV estimator using scaled standard
errors with respect to βc (left) and βm (right).
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Chapter 5

Meta-analysis models for

Mendelian randomization studies

5.1 Introduction

Meta-analyses provide quantitative summaries of the evidence available on a particular

research question. It has been argued that statistical power can be low in individual

Mendelian randomization studies since large sample sizes are required to produce precise

estimates of the phenotype-disease association (Davey Smith et al., 2004; Lawlor et al.,

2008d). The CRP CHD Genetics Collaboration calculated sample size requirements for a

Mendelian randomization analysis based on the expected effects of the genotype on the

phenotype and the phenotype effects on the disease risk for the association between CRP

and coronary heart disease. This study will require more than 10,000 cases to detect

odds ratios less than 1.2. However, such a large sample size is not usually feasible in a

single study, hence the CRP CHD Genetics Collaboration, (2008) is a collaboration of

studies. So it is an advantage if the genotype-disease and genotype-phenotype estimates

are derived from meta-analyses.

An issue in meta-analysis is whether the underlying effect is assumed to be the same in
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all studies, which means whether a fixed or random effects analysis is more appropri-

ate (DerSimonian & Laird, 1986; Whitehead & Whitehead, 1991). For a meta-analysis

of Mendelian randomization studies it would be possible to include between study het-

erogeneity on the gene-phenotype, gene-disease and the phenotype-disease associations.

There are methods to quantify the amount of heterogeneity in a meta-analysis such as

the I2 statistic which is effectively an intra-class correlation coefficient for a meta-analysis

(Higgins & Thompson, 2002).

One approach to the meta-analysis of Mendelian randomization studies would be to per-

form univariate meta-analyses of the gene-phenotype and gene-disease associations. The

the ratio of coefficients approach could then be used to derive the phenotype-disease as-

sociation. There are also meta-analysis models for studies that report multiple outcome

measures based upon the multivariate normal distribution (van Houwelingen et al., 1993,

2002). These models can be specified as fixed or random effects models and have the

advantage that they can accommodate the within and between study variances and cor-

relations between the outcome measures. If each study in the meta-analysis is truly a

‘Mendelian randomization’ study then it will report gene-disease and gene-phenotype out-

come measures. Multivariate meta-analysis models for Mendelian randomization studies

have been proposed based on the multivariate normal distribution making use of the ratio

of coefficients approach (Minelli et al., 2003, 2004; Thompson et al., 2005).

Some of the work in this chapter is published in Palmer et al. (2008c) which is included

at the end of the thesis.

5.2 Meta-analysis methods

This section describes the information available from a case-control study and the estima-

tion of the phenotype-disease association using Mendelian randomization. Methods are

then proposed for the meta-analysis of Mendelian randomization studies incorporating

all three genotypes by using two genotype comparisons. This idea is then related to the
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genetic model-free approach of Minelli et al. (2005a,b).

5.2.1 The ratio of coefficients approach for case-control studies

Suppose that the genotype, phenotype and disease status information are collected in the

same study. For a genetic polymorphism with two alleles, the common allele, g and a

minor allele, G, there are three possible genotypes; the common or wild-type homozygote

(gg), the heterozygote (Gg), and the mutant or uncommon homozygote (GG). Table 5.1

summarises the genotype-disease and genotype-phenotype associations in a case-control

study. In the table the counts of cases and controls are denoted ndj , subscript d indicates

case or control status (1 or 0) and subscript j denotes the genotype (1, 2 or 3 corresponding

to gg, Gg and GG).

It has been commented that the phenotype should be measured in the controls since reverse

causation might affect the level of the phenotype in the cases (Thompson et al., 2003).

The observed mean phenotype levels in the controls are denoted by xj which are estimates

of the true mean phenotype levels denoted µj . The observed standard deviations of the

phenotype levels are denoted sdj . The observed mean phenotype differences between either

the heterozygotes or the rare homozygotes versus the common homozygotes are given by

δ̂j = xj − x1, the subscript indicates the genotype with which the common homozygotes

are compared. The true genotype-phenotype mean differences are given by δj = µj − µ1.

The genotype-disease log odds ratios are denoted by θj .

Genotypes
gg Gg GG

Number of controls n01 n02 n03

Number of cases n11 n12 n13

Mean phenotypes in controls (s.d.) x1 (sd1) x2 (sd2) x3 (sd3)

Table 5.1: Data available from a Mendelian randomization case-control study

The usual estimates of the gene-disease log odds ratios and their variances, based on the
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delta-method, and covariances are given by,

θ̂2 = log

(
n12/n02

n11/n01

)
(5.1)

var(θ̂2) =

1∑

d=0

2∑

j=1

1

ndj
(5.2)

θ̂3 = log

(
n13/n03

n11/n01

)
(5.3)

var(θ̂3) =

1∑

d=0

∑

j=1,3

1

ndj
(5.4)

cov(θ̂2, θ̂3) =

1∑

d=0

1

nd1
. (5.5)

The variances of the mean phenotype differences are given by,

var(δ̂2) = var(x2) + var(x1) (5.6)

var(δ̂3) = var(x3) + var(x1) (5.7)

cov(δ̂2, δ̂3) = var(x1). (5.8)

In an individual study if the disease status variable were a continuous outcome measure

then the application of instrumental variable methods would produce an unbiased estimate

of the phenotype-disease association, assuming that the genotype met the core conditions

to qualify as an instrumental variable (Didelez & Sheehan, 2007b; Greene, 1999). How-

ever, case-control studies typically rely on binary disease status variables. So the ratio of

coefficients approach can be used to estimate the phenotype-disease association by using

the gene-disease log odds ratios and gene-phenotype mean differences as continuous out-

come measures (Thomas et al., 2007; Thompson et al., 2003). The phenotype-disease log

odds ratio, denoted by η, is given by,

η̂[k] ≈
kθ

δ
where k is a constant. (5.9)
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Sometimes a unit increase in the phenotype will be biologically implausible and so an

arbitrary constant k can be included in the ratio so that η represents the log odds ratio

associated with a k-unit change in the phenotype (Thompson et al., 2003).

From the data available from a Mendelian randomization case-control study reporting all

three genotypes two non-redundant estimates of the phenotype-disease log odds ratio are

possible. One estimate of η is based on the comparison of the common homozygotes with

the heterozygotes, using θ2 and δ2. The other is based on the rare homozygotes compared

with the common homozygotes, using θ3 and δ3. In many situations it will be sensible

to assume that the two estimates relate to a common underlying log odds ratio. In the

meta-analysis model these two estimates of η can be combined into a single, more efficient,

estimate.

5.2.2 Meta-analysis incorporating two genotype comparisons

The meta-analysis model incorporating two genotype comparisons builds on previous

meta-analysis models for Mendelian randomization studies for a single genotype compari-

son (Minelli et al., 2004; Thompson et al., 2005). The model relates the pooled gene-disease

log odds ratios and pooled gene-phenotype mean differences using the ratio of coefficients

approach from Equation 5.9 through the mean vector of a multivariate normal distribu-

tion. The model follows multivariate meta-analysis methodology, such as van Houwelingen

et al. (2002), through the specification of the marginal distribution of the study outcome

measures by combining within and between study variance-covariance matrices. The ap-

proach is the multivariate analogue of the univariate random-effects meta-analysis model

of DerSimonian and Laird (DerSimonian & Laird, 1986).

In the following notation subscript i denotes a study. It is assumed that the observed mean

phenotype differences are normally distributed such that δ̂ji ∼ N(δji, var(δ̂ji)) and that

the true study-specific mean differences are normally distributed such that δji ∼ N(δj , τ2
j ),

where τ2
j is the between study variance of the true study mean differences. Then the

marginal distribution of the observed mean differences is given by δ̂ji ∼ N(δj , var(δ̂ji) +
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τ2
j ). Denoting the correlation between the pooled mean phenotype differences by ρ, the

multivariate Mendelian randomization meta-analysis model, referred to as the MVMR

model, then takes the following form,





θ̂2i

δ̂2i

θ̂3i

δ̂3i





∼ MV N









ηδ2

δ2

ηδ3

δ3





, V i + B1





, (5.10)

V i =





var(θ̂2i) 0 cov(θ̂2i, θ̂3i) 0

0 var(δ̂2i) 0 cov(δ̂2i, δ̂3i)

cov(θ̂3i, θ̂2i) 0 var(θ̂3i) 0

0 cov(δ̂3i, δ̂2i) 0 var(δ̂3i)





, (5.11)
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τ2
2 τ2τ3ρ

τ2τ3ρ τ2
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⊗
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η 1
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ητ2
2 τ2

2 ητ2τ3ρ τ2τ3ρ

η2τ2τ3ρ ητ2τ3ρ η2τ2
3 ητ2

3

ητ2τ3ρ τ2τ3ρ ητ2
3 τ2

3





. (5.12)

The terms in the within-study covariance matrix, V i, are assumed known from the data

reported by the studies and it is also assumed that there is no correlation between the

gene-phenotype and gene-disease outcome measures as in Thompson et al. (2005). From

the use of the Kronecker product it is apparent that B1 is singular, however V i + B1 is

not, which allows the calculation of the likelihood.

The parameters of this model can be estimated by maximising the log-likelihood. For

i = 1 . . . n studies Yi represents the (4 × 1) vector of outcome measures, β represents the

(4 × 1) mean vector of the multivariate normal distribution and Σi = V i + B1. The

log-likelihood of the multivariate normal distribution up to a constant is given by,

n∑

i=1

−1/2
{
log(|Σi|) + (Yi − β)′Σ−1

i (Yi − β)
}

. (5.13)
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To improve the quadratic properties of the log-likelihood the log of τ2
2 and τ2

3 and the

Fisher’s z-transform of ρ were used in the maximization which was performed using the

optim function in R (version 2.7.0) (R Development Core Team, 2008).

5.2.3 Meta-analysis incorporating the genetic model-free approach

In the analysis of genetic association studies the mode of inheritance is usually unknown

and so an assumption is made about the underlying genetic model. In contrast the ge-

netic model-free approach estimates this underlying genetic model from the available data

through a parameter λ (Minelli et al., 2005a,b). When λ is equal to 0, 0.5 and 1 this

represents recessive, additive and dominant models for the minor allele respectively.

The genetic model-free approach was devised in the context of a meta-analysis of two

genotype comparisons for gene-disease outcome measures (Minelli et al., 2005a,b). A

consequence of assuming that the phenotype-disease association is constant across the

comparison of the heterozygotes with the common homozygotes and the comparison of

the rare homozygotes with the common homozygotes in Equation 5.10 is that the genetic

model is assumed to be equal using either gene-disease or gene-phenotype outcomes, such

that,

θ2

δ2
=

θ3

δ3
implies λ =

θ2

θ3
=

δ2

δ3
. (5.14)

The suggestion that the underlying genetic model can be inferred from either the gene-

disease or gene-phenotype outcome measures was made by Thakkinstian et al. (2005,

Section 2.4 and Table I), although they did not explicitly calculate the λ statistic or note

the relationship between genetic model-free and Mendelian randomization approaches.

The multivariate Mendelian randomization meta-analysis model incorporating the genetic
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model-free approach, referred to as the MVMR-GMF model, is given by,





θ̂2i

δ̂2i

θ̂3i

δ̂3i





∼ MV N









ηλδ3
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ηδ3

δ3
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, (5.15)

B2 =




λ2τ2

3 λτ2
3

λτ2
3 τ2

3



⊗




η2 η

η 1



 =





η2λ2τ2
3 ηλ2τ2

3 η2λτ2
3 ηλτ2

3

ηλ2τ2
3 λ2τ2

3 λητ2
3 λτ2

3

η2λτ2
3 λητ2

3 η2τ2
3 ητ2

3

ηλτ2
3 λτ2

3 ητ2
3 τ2

3





. (5.16)

Similarly to the previous model B2 is singular but again Σi = V i + B2 is not. The

z-transform of λ can be used in the maximization along with the other transformations

previously described to help improve the quadratic properties of the log-likelihood. This

model was also fitted by maximizing the log-likelihood in Equation 5.13.

It is also possible to estimate the parameters of this model using Bayesian methods.

One Bayesian approach known as the Product Normal Formulation (PNF) expresses the

multivariate normal distribution for each study’s outcome measures as a series of univariate

normal distributions linked by the relationships between the means (Spiegelhalter, 1998),

such that,

θ̂2i ∼ N(ηλδ3i, var(θ̂2i)),

δ̂2i ∼ N(λδ3i, var(δ̂2i)),

θ̂3i ∼ N(ηδ3i, var(θ̂3i)),

δ̂3i ∼ N(δ3i, var(δ̂3i)),

δ3i ∼ N(δ3, τ2
3 ). (5.17)

It should be noted that the PNF relies upon the use of the Gibbs sampler (Geman &
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Geman, 1984) to be estimated, since the correlations between the variables are induced

by the sequential nature of parameter updating under this algorithm. The Gibbs sampler

is implemented in WinBUGS which was used to fit this model (Lunn et al., 2000). The

following prior distributions were assumed for the parameters to be estimated,

δ3 ∼ N(0, 1×106), τ−2
3 ∼ Gamma(0.1, 0.1), η ∼ N(0, 1×106), λ ∼ Beta(1, 1). (5.18)

The normal prior distribution is approximately uniform over a broad range. The Beta

prior distribution restricts λ to lie between 0 and 1.

5.2.4 Missing outcomes

In a meta-analysis it is possible that some studies may not report all four outcomes. If

studies are missing either gene-disease or gene-phenotype outcome measures these studies

can be included in the model fitting using the appropriate bivariate log-likelihood derived

by taking the appropriate rows and columns from equations (2), (3) and (4) or equations

(7), (3) and (8). This requires the assumption that the missing outcomes are missing at

random and not missing for a systematic reason.

5.2.5 Diagnostic plots

The results of a bivariate Mendelian randomization meta-analysis have been presented

using a two column forest plot instead of two separate forest plots (Minelli et al., 2004;

Thompson et al., 2005). For example, it can be difficult to detect consistent trends in the

results of individual studies across multiple outcomes if separate single column forest plots

are used, such as Lewis et al. (2006). For the models presented here using four outcomes

the two column forest plot can be extended to a four column forest plot. To help compare

the precision of the estimates the two columns of gene-disease log odds ratios should use

the same scale as should the two columns of gene-phenotype mean differences. This plot
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is shown in Figure 5.1.

In the meta-analysis models the assumption of the common phenotype-disease associa-

tion in both genotype comparisons can be assessed by plotting the gene-disease outcome

measures against the gene-phenotype measures (Minelli et al., 2004). From the ratio of

coefficients approach the phenotype-disease association can be expressed as the gradient

of the line of best fit through the origin on this plot which is shown in Figure 5.2.

In the MVMR-GMF meta-analysis model the assumption that the genetic model is the

same in the gene-disease and gene-phenotype outcomes can be assessed by plotting the Gg

vs gg comparison against the GG vs gg comparison for each set of outcomes respectively

(Minelli et al., 2005b). From the genetic model free approach λ is given by the gradient

of the line of best fit through the origin on these plots which are shown in Figure 5.3.

5.3 Application to bone mineral density and osteoporotic

fracture

An example meta-analysis which reported the four outcome variables required to demon-

strate the models was a meta-analysis which investigated the relationship between a poly-

morphism in the COL1A1 gene and bone mineral density (BMD) and the risk of osteo-

porotic fracture (Mann et al., 2001).

5.3.1 Description of the meta-analysis

The COL1A1 gene codes for one of the main forms of collagen and the Sp1 polymorphism

has been shown in epidemiological studies to be associated with both bone mineral density

and the risk of fracture (Grant et al., 1996; Uitterlinden et al., 1998). This polymorphism is

therefore a candidate for use as an instrumental variable in the estimation of the association

between bone mineral density and fracture risk. The COL1A1 study presented two meta-

analyses based on a single nucleotide, G to T, polymorphism affecting a binding site for

102



Chapter 5. Meta-analysis models for Mendelian randomization studies

the transcription factor Sp1 in the COL1A1 gene. One meta-analysis investigated studies

into COL1A1 and bone mineral density and the other meta-analysis investigated studies

of COL1A1 and osteoporotic fracture risk. It is therefore possible to apply Mendelian

randomization meta-analysis to this example. The studies of the gene-phenotype and gene-

disease associations should be free from confounding whereas studies of the association

of BMD with fracture may be confounded by factors such as the subject’s age or the

amount of exercise they take, and there may also be unknown confounders which cannot

be controlled for in the analysis.

The G and T alleles of the polymorphism in the COL1A1 gene are sometimes labelled S

and s for the common and minor alleles respectively, but for consistency with the methods

section they are labelled g and G. In estimating the phenotype-disease association using

Mendelian randomization a one unit change in the phenotype can have a large impact

on disease risk. In the example the standard deviation of the mean difference in BMD

was 0.05 g/cm2 between the homozygote genotypes and 0.03 g/cm2 for comparison of the

heterozygotes versus the common homozygotes. Therefore the scaling constant, k, was set

to 0.05 in the analysis to ensure the pooled phenotype-disease odds ratio was estimated

on an appropriate scale.

5.3.2 Results of the meta-analysis

Figure 5.1 shows a four column forest plot of the COL1A1 meta-analyses. The first

and second columns of the forest plot present the genotype-disease (G-D) and genotype-

phenotype (G-P) outcomes for the Gg versus gg genotypes whilst the third and fourth

columns show the outcomes for the GG versus gg genotypes. The forest plot shows that

there is an increased risk of fracture in the Gg over the gg genotype and an increased

risk again in the GG genotype. The heterozygotes and the rare homozygotes had lower

BMD than the common homozygotes. The forest plot shows that the comparison of

the heterozygotes with the common homozygotes has more precise estimates because the

confidence intervals around the point estimates are narrower and shows less between study
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heterogeneity because the point estimates are more similar to one another.

Grant 1996b

Garnero 1996

Hampson 1996

Sowers 1999

Harris 2000

Alvarez 1999

Uitterinden 1998b

Roux 1998

Grant 1996a

McGuigen 2000

Keen 1999

Hustmyer 1999

Weichetova 2000

Uitterinden 1998a

Braga 2000

Langdahl 1996

Liden 1998

Heegard 2000
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Gg versus gg
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−4 −2 0 2 4

GG versus gg

G−P mean difference

Figure 5.1: Four column forest plot of the COL1A1 multivariate meta-analysis. The
genotype-phenotype (G-P) columns are on a per 0.05g/cm2 scale.

The parameter estimates from the meta-analysis models incorporating all three genotypes

are shown in Table 5.2. In the tables of parameter estimates, NA indicates a parameter

that was not estimated in that particular model. The estimation of the PNF model was

performed with a burn-in of 10,000 iterations followed by a chain of 50,000 iterations and

MCMC convergence was assessed graphically. The estimates of η were similar across the

three models with odds ratios of osteoporotic fracture of 0.38 and 0.39 per 0.05g/cm2
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increase in BMD. All three pooled odds ratios were statistically significant at the 5%

level. The parameters in the PNF model had wider 95% credible intervals than the 95%

confidence intervals in the MVMR-GMF model. The estimates of λ in the MVMR-GMF

and PNF models were close to 0.5 with both 95% intervals including 0.5 suggesting an

additive model.

MVMR MVMR-GMF PNF
Parameter Est (95% CI) Est (95% CI) Est (95% CrI)

(n = 18) (n = 18) (n = 18)

η -0.96 (-1.39, -0.53) -0.94 (-1.41, -0.47) -0.97 (-1.53, -0.58)
exp(η) 0.38 (0.25, 0.59) 0.39 (0.24, 0.63) 0.38 (0.22, 0.56)
λ NA 0.43 (0.20, 0.61) 0.47 (0.28, 0.74)
δ2 -0.47 (-0.63, -0.30) NA NA
δ3 -0.85 (-1.35, -0.35) -0.94 (-1.34, -0.55) -0.92 (-1.44, -0.49)
τ2
2 0.03 (0.001, 1.17) NA NA

τ2
3 0.53 (0.15, 1.91) 0.35 (0.10, 1.28) 0.43 (0.07, 1.35)

ρ 0.05 (-0.89, 0.91) NA NA
Log-likelihood -6.42 -11.24 NA

Table 5.2: Parameter estimates for meta-analysis models using studies with complete and
incomplete outcomes.

As a comparison parameter estimates from bivariate meta-analysis models similar to those

considered by Thompson et al. (2005) for the two genotype comparisons separately are

given in Table 5.4. The pooled odds ratio of fracture was 0.34 (95% CI: 0.17, 0.68) per

0.05 g/cm2 for the Gg vs gg comparison and 0.42 (95% CI: 0.25, 0.72) for the GG vs

gg comparison and the three estimates from the models in Table 5.2 are between the

two values. The estimates in Table 5.2 are also more precise, as shown by the narrower

confidence intervals, because of the inclusion of data for both genotype comparisons.

PNF SA 1 PNF SA 2
Parameter Est (95% CrI) Est (95% CrI)

(n = 18) (n = 18)

η -1.01 (-1.61, -0.60) -0.97 (-1.53, -0.58)
exp(η) 0.38 (0.20, 0.55) 0.39 (0.22, 0.56)
λ 0.49 (0.28, 0.78) 0.46 (0.27, 0.75)
δ3 -0.89 (-1.41, -0.48) -0.93 (-1.49, -0.48)
τ2
3 0.35 (0.01, 1.23) 0.21 (0.04, 1.62)

Table 5.3: Sensitivity analyses for the PNF model.
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In Table 5.3 two sensitivity analyses were performed for the product normal formu-

lation model by varying the prior distribution on τ2
3 . Sensitivity analysis 1 was per-

formed with 1/τ2
3 ∼ Gamma(0.001, 0.001) and sensitivity analysis 2 was performed with

1/τ3 ∼ Uniform(0.1, 10). The values of the parameter estimates did not change substan-

tially compared with the original model.

Gg vs gg GG vs gg
Parameter Estimate (95% CI) Estimate (95% CI)

(n = 18) (n = 18)

η -1.08 (-1.76, -0.39) -0.86 (-1.39, -0.33)
exp(η) 0.34 (0.17, 0.68) 0.42 (0.25, 0.72)
δ2 -0.44 (-0.59, -0.28) NA
δ3 NA -0.90 (-1.42, -0.38)
τ2
2 0.02 (0.001, 2.27) NA

τ2
3 NA 0.56 (0.16, 1.96)

Table 5.4: Parameter estimates from bivariate Mendelian randomization meta-analysis
models using studies with complete and incomplete outcomes.

Parameter estimates from the bivariate meta-analysis models incorporating the genetic

model-free approach using the gene-disease and gene-phenotype associations separately as

in Minelli et al. (2005b) are given in Table 5.5. The maximization of the gene-disease model

failed to converge and so the between study variance, τ2
θ3

, was held constant. The fixed

value of τ2
θ3

of 0.31 was taken from the univariate random effects meta-analysis of the GG

vs gg gene-disease log odds ratios. The estimate of λ was 0.44 (95% CI: 0.19, 0.64) from

the gene-disease log odds ratios and 0.42 (95% CI: 0.08, 0.67) from the gene-phenotype

mean differences and the estimate of λ from the MVMR-GMF model is between these two

values with increased precision. Two sensitivity analyses (SA) for the gene-disease genetic

model free meta-analysis model were performed with values of τ2
θ3

greater and less than

0.31. The parameter estimates from these sensitivity analyses were qualitatively similar

to the original model.

Figure 5.2 shows the diagnostic plot to assess the pooled estimate of η with the gene-

phenotype outcome measures on the x -axis and the gene-disease outcome measures on

the y-axis. Given that two genotype comparisons are assessed, each study can contribute
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Gene-disease GD SA 1 GD SA 2 Gene-phenotype
Parameter Estimate (95% CI) Est (95% CI) Est (95% CI) Estimate (95% CI)

(n = 13) (n = 13) (n = 13) (n = 15)

λ 0.44 (0.19, 0.64) 0.61 (0.10, 0.86) 0.41 (0.18, 0.60) 0.42 (0.08, 0.67)
θ3 0.96 (0.50, 1.43) 0.78 (0.51, 1.04) 1.01 (0.47, 1.54) NA
exp(θ3) 2.62 (1.65, 4.16) 2.17 (1.67, 2.82) 2.74 (1.60, 4.69) NA
τ2
θ3

fixed at 0.31 fixed at 0 fixed at 0.5 NA

δ3 NA NA NA -0.88 (-1.40, -0.37)
τ2
3 NA NA NA 0.48 (0.10, 2.31)

Table 5.5: Parameter estimates from bivariate genetic model-free meta-analysis models.

two points to the plot. A line with gradient equal to the pooled estimate of η is drawn

on the plot to help assess the fit of the model. Only one point did not lie within one

standard deviation of the fitted line. Figure 5.2 also shows that the point estimates from

the GG versus gg comparison have greater between study heterogeneity because the point

estimates are spread over a wider range, and they are less precise than the point estimates

from the Gg versus gg comparison.

Figures 5.3(a) and 5.3(b) assess the estimated genetic model from the MVMR-GMF meta-

analysis model. On both figures lines have been plotted with gradients equal to λ̂ from

the MVMR-GMF model and 0.5 to represent the additive genetic model. For this meta-

analysis these figures are sensitive to the fact that not all studies reported both sets of

outcome measures and so not all studies could be shown on each plot.

5.4 Discussion and conclusions

In observational epidemiology estimates from a Mendelian randomization analysis can

provide improved estimates of the association between a biological phenotype and a disease

compared with direct estimates of this association. The proposed meta-analysis models

extend previous literature by incorporating both genotype comparisons for a given genetic

polymorphism into the same model. The MVMR-GMF and PNF meta-analysis models

also incorporate the estimation of the underlying genetic model for the risk allele in a
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Figure 5.2: Gene-disease log odds ratios versus gene-phenotype mean differences (per
0.05g/cm2) plotted with 1 standard deviation error bars. The gradient of the line is given
by η̂ from the MVMR meta-analysis model.

Mendelian randomization analysis.

The proposed meta-analysis models rely on two important assumptions, namely; that the

phenotype-disease association is the same in the Gg versus gg and the GG versus gg geno-

type comparisons and that the underlying genetic model is the same in the gene-phenotype

and gene-disease associations. These assumptions are assessed in Figures 5.2 and 5.3. The

modelling approach could be extended to allow the phenotype-disease log odds ratio, η, to

vary across studies. This would most easily be implemented using Bayesian methodology.

Figure 5.1 shows a four column forest plot for a Mendelian randomization meta-analysis

across two genotype comparisons. From the plot the relative precision of the estimates

from the two genotype comparisons and the patterns in the estimates of individual studies

can be assessed.
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(a) Genotype-phenotype information per 0.05g/cm2
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(b) Genotype-disease information

Figure 5.3: Graphical assessment of the estimated genetic model. The gradient of the bold
lines is λ̂ from the MVMR-GMF model. A dashed line with gradient 0.5 representing the
additive genetic model is also shown, a lines with gradients 0 and 1 would represent the
recessive and dominant genetic models respectively.

Incorporating multiple genotype comparisons into a Mendelian randomization analysis is

advantageous because the comparison of the heterozygotes with the common homozygotes

has the larger sample size, whilst the comparison of the rare homozygotes with the common

homozygotes has the larger difference in disease risk. Therefore the pooled estimate of the

phenotype-disease association from the MVMR, MVMR-GMF and PNF models in Table

5.2 were between the estimates for the two separate bivariate meta-analysis models using

single genotype comparisons in Table 5.4. The pooled estimate of the phenotype-disease

association in the MVMR and MVMR-GMF models also showed increased precision over

the single genotype comparison models because they included more information. Another

advantage of incorporating all three genotypes is that if some of the studies omit to re-

port either genotype-phenotype or genotype-disease outcome measures then they can be

accommodated in the meta-analysis model using the appropriate bivariate normal likeli-

hood. This requires the additional assumption that the missing outcomes were missing at

random and not missing for a systematic reason such as reporting bias.
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The estimation of the underlying genetic model for the risk allele, known as the genetic

model-free approach, can also be incorporated within this meta-analysis framework. The

proposed approach extends previous literature through the joint synthesis of the genotype-

disease and genotype-phenotype information to estimate the genetic model. This means

that no strong assumptions about the genetic model are required prior to the analysis. In

the example meta-analysis the genetic model was estimated close to the additive genetic

model. Apart from random variation, an explanation for estimates of λ not at one of the

genetic models is that in some studies there may have been a recessive effect and in other

studies an additive effect and hence the value of λ represents the average of these. Another

explanation is that a gene’s mode of action in complex diseases may differ from that found

in Mendelian traits since the genotype is only one of many factors acting in a complex

causal cascade leading to the disease (Minelli et al., 2005b). Allowing heterogeneity within

the estimation of λ could be investigated using Bayesian methods.

The estimation of bivariate meta-analysis models has been shown to be problematic when

correlation parameters are near ±1 (Riley et al., 2007a,b, 2008; van Houwelingen et al.,

2002). To overcome this problem an alternative form of the marginal distribution for a

multivariate meta-analysis model has been proposed which assumes a common correlation

term both within and between studies (see model A in Thompson et al. (2005) or Riley

et al. (2008)). The advantage of this alternative covariance structure is that only study

outcome measures and their respective variances are required to fit the multivariate meta-

analysis model. The same information is required to perform the univariate meta-analyses

for each outcome measure separately. A further discussion of how the relative magnitudes

of the within and between study covariance matrices can affect parameter estimates in

multivariate meta-analysis models is provided by Ishak et al. (2008). To fit multivariate

meta-analysis models the restricted log-likelihood could be used in the maximization as

an alternative to the log-likelihood (Riley et al., 2008).

It would be possible to use these and the previously proposed bivariate meta-analysis mod-

els for Mendelian randomization studies reporting continuous disease outcome measures
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since the models assume that the log odds ratios are continuous and normally distributed.

For case-control studies it would be possible to achieve similar pooled estimates of the

phenotype-disease log odds ratio across two genotype comparisons using either a retro-

spective or a prospective likelihood for the genotype-disease outcome measures, which has

previously been demonstrated for the genetic model-free approach (Minelli et al., 2005a).

Meta-analysis models have been used to estimate other parameters of interest from genetic

data. For example, meta-regression has been used to investigate deviations from Hardy-

Weinberg equilibrium (Salanti et al., 2007) and merged genotype comparisons have been

used to assess Hardy-Weinberg equilibrium and estimate the genetic model-free approach

(Salanti & Higgins, 2008). The work presented here also has parallels with modelling

baseline risk in meta-analyses (Thompson et al., 1997; van Houwelingen & Senn, 1999).

The limitations that apply to the analysis of a single study using Mendelian randomization

also apply to each of the studies in the meta-analysis. Therefore, it is important to assess

that the selected genotype fulfills the conditions of an instrumental variable (Didelez &

Sheehan, 2007b) and whether any of the factors which could potentially affect Mendelian

randomization analyses such as pleiotropy or canalization are present (Davey Smith &

Ebrahim, 2004).

With respect to the example a large study, with a sample size of approximately 20,000,

has subsequently been published investigating the COL1A1 Sp1 polymorphism and its

effects on osteoporosis outcomes (Ralston et al., 2006). The study observed that the poly-

morphism is associated with reduced bone mineral density in women and could predispose

to incident vertebral fractures, although the observed associations were modest.

With respect to the plot of the gene-disease estimates versus the gene-phenotype estimates,

in Figure 5.2, Freathy et al. (2008) used meta-analysis estimates instead of study estimates

on an identical plot. Using estimates from meta-analyses in this way is referred to as meta-

epidemiology (Egger et al., 2002; Naylor, 1997). As noted by Egger et al. (2003) the aims

of the first meta-epidemiological studies, such as Schulz et al. (1995), was to assess possible

bias in the pooled effects reported in meta-analyses but some authors have started to pool
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the results of meta-analyses, for example Sterne et al. (2002, Figures 1 & 2) and Wood

et al. (2008).

5.4.1 Conclusion

In conclusion, estimating the phenotype-disease association using separate genotype com-

parisons is often limited in that the comparison of the homozygote genotypes has a smaller

sample size, whereas the comparison of the heterozygotes with the common homozygotes

involves a smaller difference in disease risk. Pooling the phenotype-disease association

across these comparisons produces an estimate that is a weighted average of the two but

with increased precision. This meta-analysis framework can incorporate the estimation of

the genetic model-free approach so that no strong prior assumptions about the underlying

genetic model are required.
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Chapter 6

The ratio of coefficients approach

6.1 Introduction

The aim of this chapter is to investigate the properties of the ratio of coefficients approach

for estimating the phenotype-disease log odds ratio in Mendelian randomization studies

reporting binary outcomes. This includes the application of the ratio of coefficients ap-

proach within a single cohort and within the multivariate meta-analysis models proposed

in Chapter 5.

The motivation for the work in this chapter is that Thompson et al. (2003) investigated

the ratio of coefficients approach for Mendelian randomization studies reporting binary

outcomes using a numerical approximation to estimate the gene-disease log odds ratio (the

numerator of the ratio). The report concluded that the variance of the denominator, the

genotype-phenotype association, is important in determining the accuracy of the ratio of

coefficients estimate of the phenotype-disease association. This report also discussed some

of the problems associated with deriving a confidence interval for the ratio of coefficients

estimate using Fieller’s Theorem. This chapter investigates the ratio of coefficients ap-

proach using an alternative approximation, specifically a Taylor series expansion, which is

also used to derive a confidence interval for ratio estimate.
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Additionally, in Chapter 5 two estimates of the phenotype-disease log odds ratio, η2 and

η3, were defined using the two genotype comparisons of the Gg (heterozygotes) genotype

and the GG (rare homozygotes) genotype with the gg (common homozygotes) genotype

respectively. It was hypothesised that η2 and η3 should be equal. Therefore, this chapter

investigates whether these estimates have similar properties within a single cohort and

also within the multivariate MVMR meta-analysis model from the previous chapter.

6.2 Taylor series expansion

An alternative approach to investigating the ratio of coefficients estimate, to that used by

Thompson et al. (2003), is to use a Taylor series expansion of the expectation of the ratio

which has been discussed by Thomas et al. (2007). The Taylor series can also be used

to derive an approximation of the variance of the ratio which in turn allows a confidence

interval to be derived for the ratio estimate. The phenotype-disease log odds ratio, the

genotype-disease log odds ratio and the genotype-phenotype association are denoted by

η, θ and δ; and θ and δ are random variables with means θ and δ.

The standard formula for a Taylor series expansion, upto the second order, of a function

of two variables is given below (Spiegel, 1971, Equation 16),

f(θ, δ) ≈ f(θ, δ) +
∂f(θ, δ)

∂θ
(θ − θ) +

∂f(θ, δ)

∂δ
(δ − δ)

+
1

2!

[
∂2f(θ, δ)

∂θ2
(θ − θ)2 + 2

∂2f(θ, δ)

∂θ∂δ
(θ − θ)(δ − δ) +

∂2f(θ, δ)

∂δ2
(δ − δ)2

]
. (6.1)

Therefore, the Taylor series expansion of f(θ, δ) = η = θ/δ about θ and δ is given by,

θ

δ
≈ θ

δ
+

1

δ
(θ − θ) +

−θ

δ
2 (δ − δ)

+
1

2

[
0(θ − θ)2 + 2

−1

δ
2 (θ − θ)(δ − δ) + 2

θ

δ
3 (δ − δ)2

]
. (6.2)

Interest is in the expected value of the ratio, E(θ/δ), so it is necessary to take the ex-
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pectation of the previous expression. Taking the expectation of the previous expression

removes the first order terms since E(θ − θ) = 0 and E(δ − δ) = 0, and hence,

E

(
θ

δ

)
≈ θ

δ
− E((θ − θ)(δ − δ))

δ
2 +

θE((δ − δ)2)

δ
3

=
θ

δ
− cov(θ, δ)

δ
2 +

θvar(δ)

δ
3 . (6.3)

The above expression for the Taylor series expansion of the ratio of two means is well

known in the statistics literature and has been given by Hayya et al. (1975, Equation 7)

and Thomas et al. (2007) amongst others. Rearranging Equation 6.3 for θ/δ shows that the

accuracy of the ratio of coefficients approach will primarily depend the upon the variance

of δ and the covariance between the gene-disease and gene-phenotype associations.

The expression for the variance of the ratio using the Taylor series expansion is also well

known in the statistics literature, for example it has been given by Kendall & Stuart (1977,

Equation 10.17) and Wolter (2003, Equation 6.8.1). The expression for the variance takes

the form,

var

(
θ

δ

)
≈ θ

2
var(δ)

δ
4 +

var(θ)

δ
2 − 2θcov(θ, δ)

δ
3 . (6.4)

It is then possible to derive a confidence interval for E(θ/δ) under the assumption it is

normally distributed with mean and variance given by Equations 6.3 and 6.4 respectively

(Hayya et al., 1975).

The Taylor series approximations are investigated by substituting in some hypothetical

parameter values. It is simplest to assume that there is no correlation between θ and δ

and so the covariance terms are dropped from the expressions. Thompson et al. (2003)

considered an example using the MTHFR gene, levels of homocysteine as the phenotype
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and coronary heart disease, the parameter values are given below,

θ = 0.15, var(θ) = 0.052 = 0.0025,

δ = 1.5, var(δ) = 0.22 = 0.04.

θ/δ = 0.1000

E(θ/δ) ≈ 0.1018 (95% CI: 0.0314, 0.1721).

For this example the ratio of the means is close to the Taylor series approximation because

the variance of the gene-phenotype association is small. The 95% confidence interval for

phenotype-disease log odds ratio shows that it is statistically significant from zero at the

5% level.

A 95% confidence interval for the ratio estimate using Fieller’s Theorem, as given by

Thompson et al. (2003), can be derived using the expression below,

θ/δ

1 − 1.962var(δ)/δ
2



1 ± 1.96

√
var(θ)

θ
2 +

var(δ)

δ
2 − 1.96

var(θ)

θ
2

var(δ)

δ
2



 . (6.5)

A confidence interval derived using Fieller’s Theorem is not necessarily symmetric. The

95% confidence interval using Fieller’s Theorem for the example is (0.0330, 0.1817) which

is in good agreement with the Taylor series confidence interval.

6.3 The ratio of coefficients estimates of η2 and η3

In the previous chapter η2 and η3 were defined as the phenotype-disease log odds ratios

when the Gg and GG genotypes were compared with the gg genotype respectively. There-

fore, each of η2 and η3 is the ratio of the respective gene-disease log odds ratios to the

difference in mean phenotypes. Where pj represents the probability of disease for genotype
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j, η2 and η3 are given by,

η2 =
log(p2/(1 − p2)) − log(p1/(1 − p1))

µ2 − µ1
=

θ2

δ2
(6.6)

η3 =
log(p3/(1 − p3)) − log(p1/(1 − p1))

µ3 − µ1
=

θ3

δ3
. (6.7)

The estimates of these parameters for a single study were described in the previous chapter

in the section including Equations 5.1 and 5.3.

6.3.1 Simulation algorithm

Cohorts were simulated using the approach described in Chapter 4 in Section 4.1.1. The

genotype variable, G, was generated in accordance with Hardy-Weinberg equilibrium by

setting the minor allele frequency, q. The phenotype variable, X, was then simulated from

a normal distribution conditional on the genotype. The phenotype variable was in turn

used to generate the logit of the probability of disease and the probability of disease was

then calculated through back transformation. The disease status variable was assigned if

the probability of disease for a subject exceeded a random number generated between 0

and 1. The confounder, U , was simulated from a normal distribution.

ui ∼ N(0, σ2
u) (6.8)

xi = α0 + α1gi + α2ui + εi, ε ∼ N(0, σ2
ε ) (6.9)

log

(
pi

1 − pi

)
= β0 + β1yi + β2ui (6.10)

In these simulations the phenotype-disease log odds ratio was set to be smaller than the

value of 1 set in Chapter 4. In these simulations β1 was set to log(1.25) = 0.2231436. The

aim of these simulations is to determine whether both η2 and η3 recover this value.
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6.3.2 Cohort size

With a minor allele frequency, q, of 30%, under Hardy-Weinberg equilibrium, as explained

in Section 1.3.2, 49% of subjects are expected to have the gg genotype, 42% are expected

to have the Gg genotype and 9% are expected to have the GG genotype. A cohort study

was simulated with the following parameter values; N = 3 × 105, q = 0.3, α0 = 0, α1 =

α2 = 1, σ2
ε = 1, β0 = log(0.05/0.95), β1 = log(1.25), β2 = 1, σ2

u = 1. The cohort was

found to have the cell probabilities shown in Table 6.1.

gg Gg GG Sum

Controls 0.4452 0.3708 0.0784 0.8944
Cases 0.0454 0.0475 0.0128 0.1056

Sum 0.4906 0.4183 0.0912

Table 6.1: Expected cell probabilities for the simulated cohorts.

The column sums in Table 6.1 show that the simulation algorithm followed Hardy-Weinberg

equilibrium and the row sums show that the risk of disease in the cohort was about 11%.

In this cohort the cases with the GG genotype have the smallest probability of being ob-

served. For this cohort it would require a sample size of 79 subjects in order to expect

to a single disease case in the GG genotype. Under Hardy-Weinberg equilibrium it is

interesting to note that the expected probability in the heterozygotes exceeds that of the

common homozygotes at a risk allele frequency of q > 1/3.

When there are no cases in the GG genotype then gene-disease odds ratios involving the

GG group, such as exp(θ3), will be equal to 0 and the corresponding log odds ratio will

be undefined, or more precisely θ̂3 → −∞. It is not possible to include these undefined

values of θ̂3 in the meta-analysis models, hence it is desirable to simulate cohorts in which

they don’t occur.

The probability of observing zero cases in the GG genotype is given by the Poisson distri-

bution using an event rate of the expected cell probability from Table 6.1 multiplied by
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the sample size, hence,

P (0 GG cases) =
exp(−0.0128N)(0.0128N)0

0!
. (6.11)

For N = 100, 200, 300, 500, 1000 then P = 0.28, 0.08, 0.02, 0.002, 0.000035 respectively.

Hence, using a larger sample size in the simulations implies a smaller probability of gener-

ating zero cases in the GG genotype and the use of a sample size of around 1,000 subjects

is sufficient to ensure that this has a very small probability of occurrence.

6.3.3 Single cohort simulations

The simulations were performed for several scenarios which used the same parameter

values as for the cohort in Table 6.1 except for the following changes:

• Scenario 1: N=3,000, α2, β2 = 0, σ2
ε = 1.

• Scenario 2: N=3,000, α2, β2 = 1, σ2
ε = 1.

• Scenario 3: N=3,000, α2, β2 = 0, σ2
ε = 0.12 = 0.01.

• Scenario 4: N=3,000, α2, β2 = 1, σ2
ε = 0.12 = 0.01.

Hence, scenarios 1 and 3 have no confounder effect whilst the confounder is present in

scenarios 2 and 4. Scenarios 1 and 2 have a relatively large phenotype error variance whilst

this is smaller in scenarios 3 and 4. Each scenario was performed for 10,000 iterations.

Tables 6.2 and 6.3 show the results of the simulations for the Gg versus gg and GG versus

gg genotype comparisons respectively. In the tables η̂j represents the ratio of coefficients

estimate averaged over the simulations; the θ̂j ’s and δ̂j ’s also represent the average of these

estimates over the simulations. Also in the tables a 95% confidence interval is given for

the estimates of η; the bias column relates to the bias in estimate of η with respect to

the set value; the mean squared error column is the average of the squared bias over the

simulations; and the η̂j,TS column gives the Taylor series estimate of η for the simulations

as per Equation 6.3.

119



Chapter 6. The ratio of coefficients approach

θ̂2 δ̂2 η̂2 (95% CI) Bias MSE η̂2,TS (95% TS CI)

1 0.2215 0.9977 0.2224 (0.2191, 0.2258) -0.0007 0.0289 0.2220 (0.2187, 0.2254)
2 0.2182 0.9936 0.2201 (0.2176, 0.2226) -0.0030 0.0163 0.2196 (0.2171, 0.2221)
3 0.2221 1.0000 0.2221 (0.2187, 0.2254) -0.0011 0.0287 0.2221 (0.2187, 0.2254)
4 0.2191 0.9976 0.2197 (0.2172, 0.2222) -0.0034 0.0162 0.2197 (0.2172, 0.2222)

Table 6.2: Simulation results for the ratio of coefficients approach in a single cohort for
genotypes Gg versus gg.

The general trend in the ratio of coefficients estimates of η2, the η̂2 column, in Table

6.2 is slight attenuation towards the null. However, the attenuation is not conclusive for

scenarios 1 and 3 because their respective 95% confidence intervals for η̂2 contain the set

value of log(1.25) = 0.2231.

From Table 6.2 it can be seen that the Taylor series approximation is in agreement with η̂2

for scenarios 3 and 4, since the phenotype standard deviation was small in these scenarios.

It can also be noted that due to the large number of iterations the Taylor series confidence

interval was identical to the Fieller’s Theorem confidence interval for all scenarios.

θ̂3 δ̂3 η̂3 (95% CI) Bias MSE η̂3,TS (95% TS CI)

1 0.4262 1.9940 0.2140 (0.2114, 0.2166) -0.0091 0.0180 0.2137 (0.2112, 0.2164)
2 0.4285 1.9850 0.2161 (0.2141, 0.2181) -0.0070 0.0105 0.2158 (0.2138, 0.2178)
3 0.4275 2.0000 0.2137 (0.2111, 0.2163) -0.0094 0.0177 0.2137 (0.2111, 0.2163)
4 0.4304 1.9950 0.2157 (0.2137, 0.2177) -0.0074 0.0103 0.2157 (0.2137, 0.2177)

Table 6.3: Simulation results for the ratio of coefficients approach in a single cohort for
genotypes GG versus gg.

In Table 6.3 θ3 and δ3 are twice as large as θ2 and δ2 from the previous table because an

additive genetic model was used in the simulations. The ratio of coefficients estimates of

η3, η̂3, also showed an attenuation towards the null. The attenuation for η̂3 is larger than

for η̂2 and none of the confidence intervals for η̂3 contain the set value of 0.2231. Again

η̂3,TS coincided with η̂3 for scenarios 3 and 4 due to the small value of the phenotype error

variance.

The next section considers the ratio of coefficients approach in the MVMR meta-analysis

model proposed in the previous chapter.
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6.3.4 Meta-analysis simulations

Simulations using meta-analyses are performed to investigate whether the finite sample

bias in the ratio estimate affects the pooled phenotype-disease log odds ratio from the

multivariate MVMR meta-analysis model from the previous chapter. In these simulations

ten cohort studies were considered to form a meta-analysis. For each meta-analysis the

MVMR multivariate meta-analysis model was fit using maximum likelihood estimation as

described in Section 5.2. Again η was set to 0.2231 and in this instance each scenario was

performed for 100 iterations. The results of these meta-analysis simulations are shown in

Table 6.4.

η̂MVMR (95% CI) Bias MSE

1 0.2416 (0.2343, 0.2488) 0.0184 0.0017
2 0.2331 (0.2268, 0.2393) 0.0099 0.0011
3 0.2309 (0.2241, 0.2377) 0.0078 0.0013
4 0.2253 (0.2199, 0.2307) 0.0022 0.0008

Table 6.4: Simulation results for η̂ from the MVMR model.

Table 6.4 shows that there is a positive bias in the pooled estimate of η from the meta-

analysis model and that for scenarios 1, 2 and 3 this was statistically significant from the set

value 0.2231 at the 5% level. The positive bias conflicts with the attenuation towards the

null found in the previous simulations. One possible explanation for the slight positive bias

is that ten studies per meta-analysis may have been too few for the maximum likelihood

algorithm to converge to the correct point on the likelihood surface. For example, the

optimization algorithm may have found a local rather than a global maximum.

The simulations were rerun for a larger cohort size of 300,000 and increasing the number

of studies per meta-analysis to 30, the results are shown in Table 6.5. The bias is reduced

and in this instance and now the true value of β1 is included in the confidence intervals

of η for the first three scenarios and was very close to the fourth. The estimate of η was

more precise in scenarios 3 and 4 with the smaller phenotype variance.
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η̂MVMR (95% CI) Bias MSE

1 0.2326 (0.2205, 0.2432) 0.0010 0.0030
2 0.2253 (0.2173, 0.2332) 0.0021 0.0016
3 0.2232 (0.2275, 0.2237) 0.0001 0.000001
4 0.2219 (0.2209, 0.2229) -0.0012 0.00003

Table 6.5: Simulation results for η̂ from the MVMR model using a cohort of 300,00 and
30 studies per meta-analysis.

6.4 Discussion

It is important to investigate the properties of the estimators of the phenotype-disease

association for a Mendelian randomization analysis. For example, if the IV estimators

are more biased than the direct estimators of the association then the application of the

IV estimators would be redundant. This chapter investigated the ratio of coefficients ap-

proach using a complementary approximation to that used by Thompson et al. (2003),

specifically a Taylor series approximation. Simulations were also carried out to investigate

the properties of the ratio estimate in a single cohort and in several cohorts combined

in a meta-analysis. The two estimates of the phenotype-disease association were investi-

gated from the two genotype comparisons of the heterozygotes and rare homozygotes with

common homozygotes.

A Taylor series approximation was used for the expectation and variance of the ratio of

the means of two random variables. This meant a confidence interval could be derived for

the ratio estimate as a comparison to that using Fieller’s Theorem. The Taylor series and

Fieller’s Theorem confidence intervals will be similar unless either the gene-disease log odds

ratios or gene-phenotype mean differences have a skewed distribution. The Taylor series

approximation showed that the accuracy of the ratio estimate depends upon the variance

of the genotype-phenotype association, which concurs with the findings of Thompson et al.

(2003). Thomas et al. (2007) comment that this helps to explain why IV estimates are

frequently more unstable than conventional ones. Additionally, under the Taylor series

approximation the variance of the ratio estimate will be smaller if the gene-disease and

gene-phenotype estimates are correlated because the covariance term has a negative sign.
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The Taylor series approximations to the mean and variance of the ratio of two means

are well known in the statistics literature. For example, confidence intervals for the ratio

of means has been discussed in the health economics literature on the subject of cost-

effectiveness ratios (Briggs & Fenn, 1998; Chaudhary & Stearns, 1996; O’Brien et al.,

1994). These studies considered a number of different methods for deriving confidence in-

tervals for a ratio means and concluded that Fieller’s method was preferable. They reached

this conclusion because often in health economics either the numerator or denominator

of the ratio follows a skewed distribution. It was found that Fieller’s method is better at

accommodating this skewness because it is not reliant upon the assumption of asymptotic

normality. In a Mendelian randomization analysis the distributions of θ or δ may be more

likely to be skewed in the presence of publication or reporting bias and hence Fieller’s The-

orem confidence intervals would be more appropriate in this instance. However, Fieller’s

method can be complicated to calculate so the Taylor series method is likely to provide an

acceptable approximation in most circumstances with reasonable sample sizes. It can be

noted that Walter et al. (2008) have recently proposed an equivalent method to Fieller’s

method for the confidence interval for the mean of the ratio of two normally distributed

random variables based on a geometric argument.

The ratio of coefficients estimates of η2 and η3 were investigated using simulations for a

single cohort. Some small attenuation bias was observed in these estimates which was more

pronounced when the confounder was present. The attenuation in the estimate was also

larger when the phenotype error term had a larger variance and was more pronounced for

the comparison of the two homozygote genotypes, using η3. However, the attenuation in

the estimates of η2 and η3 is small and is unlikely to affect the conclusions of an analysis.

Confidence intervals for η2 and η3 derived using the Taylor series were identical to the

confidence intervals using Fieller’s Theorem.

Simulations were performed to investigate the multivariate MVMR meta-analysis model

incorporating all three genotypes from the previous chapter. In this instance a small

positive bias was found in the pooled estimate of the phenotype-disease log odds ratio. The
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MVMR model, which is a multi-variate normal model of dimension 4, was estimated using

maximum likelihood. Riley et al. (2008) comment that multivariate normal meta-analysis

models can encounter problems converging when the correlation between the outcomes is

close to ±1. The difficulty in the convergence of the maximum likelihood algorithm occurs

because as the correlation between the outcome measures approaches ±1 the probability

density function of the multivariate normal distribution has develops a ridge instead of

a pronounced global maximum. Therefore, it is possible that the maximum likelihood

algorithm may converge to a local maximum instead of a global maximum.

In Section 6.3.2 it was explained that the probability of the occurrence of zero cases in

the rare homozygotes was minimised by using a large cohort size. This was done in order

to avoid generating an odds ratio of zero in this genotype group. In an applied meta-

analysis it may be the case that studies with zero cases in the GG genotype may need to

be included. Therefore, the discussion of continuity corrections in binary outcome studies

is of relevance for Mendelian randomization meta-analyses.

Sweeting et al. (2004) compared several different methods for dealing with zero outcomes

in binary outcome trials combined in a meta-analysis. The methods compared included the

Mantel-Haenszel odds ratio (Mantel & Haenszel, 1959), the Peto method (Yusuf et al.,

1985) and the use of a constant continuity correction to avoid a zero odds ratio. The

authors found that the common practice of applying the constant continuity correction

in the context of a standard inverse variance weighted meta-analysis performed less well

than the Mantel-Haenszel odds ratio and the Peto method with respect to the bias and

coverage of the meta-analysis pooled estimate. Bradburn et al. (2007) also found that the

Peto method was preferable for event rates less than 1% and that the Mantel-Haenszel

odds ratio, without zero cell correction, was preferable for event rates greater than 1%.

These simulations have only investigated a limited set of factors. For a meta-analysis

there are several other factors which could be investigated including publication bias and

between study heterogeneity. Both of these issues are further complicated for multivariate

meta-analyses, for example, the regression based tests for publication bias, such as Eg-
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ger’s test (Egger et al., 1997), have not been generalised for multivariate outcomes. For

a univariate meta-analysis one measure of between study heterogeneity is the I2 statistic

(Higgins & Thompson, 2002). The I2 statistic is effectively an intra-class correlation coef-

ficient for a meta-analysis since it expresses the magnitude of the between study variance

of the pooled effect estimate with respect to the sum of the within and between study

variances. The I2 statistic is now commonly reported for meta-analyses (Ioannidis et al.,

2007) and like the tests for publication bias has also not been generalised for multivariate

outcomes.

In conclusion, the ratio estimate of the phenotype-disease log odds ratio generally has

minimal bias in the meta-analysis of binary outcome Mendelian randomization studies.

However, the ratio estimate may be attenuated towards the null effect when the variance

of the genotype-phenotype association is relatively large.
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Discussion & conclusions

7.1 Discussion

The work in this thesis has reviewed and developed statistical methods for the application

of the Mendelian randomization approach within epidemiology. The work has taken the

form of a review of the published literature, an investigation of estimators for binary out-

come studies based on logistic regression, methods for meta-analysis and an investigation

of the ratio of coefficients approach. In this discussion each of these areas is considered in

turn followed by suggestions for further research and conclusions.

7.1.1 Literature review

The literature review considered the initiation of the idea behind the Mendelian random-

ization approach and its subsequent development within epidemiology. The rationale for

the approach is based on Mendel’s second law, which provides the basis for genotypes

to be used as instrumental variables to infer the association between a phenotype and a

disease. The approach can be traced back to Katan’s letter to the Lancet (Katan, 1986)

and a key milestone in its development was the recognition that it represented the use of

genotypes as instrumental variables (Davey Smith & Ebrahim, 2003).
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The literature review highlighted that when performing a Mendelian randomization anal-

ysis it is important to assess whether the genotype fulfills the necessary conditions to be

an instrumental variable. Brunner et al. (2008, Tables S1 and S2) provides an example

of an assessment of whether a genotype fulfills the conditions of an instrumental variable,

for example, the distribution of the genotypes should be independent of the measured

confounders.

The review identified that in epidemiology there is interest in estimating a causal associ-

ation between a phenotype and a disease because a causal association implies that as well

as knowing the magnitude of the association it is possible to know how a modification of

the phenotype should reduce the risk of disease (Didelez & Sheehan, 2007b). An example

of a modifiable factor that can reduce the risk of disease is periconceptual maternal folate

supplementation which can reduce the risk of neural tube defects, such as spina bifida, in

the foetus (Czeizel & Dudàs, 1992; PHOEBE, 2007; Wald & Sneddon, 1991).

The literature review also identified that there are a number of issues to consider when ap-

plying the Mendelian randomization approach. These issues include whether the selected

gene is in linkage disequilibrium with other important genes, whether the risk of disease

may be different for subgroups within the sample (population stratification), whether

canalization (which is sometimes referred to as developmental compensation) could occur

for the selected disease and whether the gene of interest has pleiotropic effects. Adequate

sample size and statistical power are also important issues for studies applying instrumen-

tal variable analysis methods.

Instrumental variable analysis was commonly used in econometrics, causal inference and

biostatistics prior to the development of the Mendelian randomization approach. The lit-

erature review identified that there is an array of statistical methods for various different

types of analysis, the most well known being the method of two-stage least squares. In-

terestingly in the case where all variables are continuous the methods of two-stage least

squares, the ratio of coefficients approach and the control function approach all produce

equivalent parameter estimates. However, the review highlighted that instrumental vari-
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able methods for studies reporting binary outcomes are not well developed which is prob-

lematic for epidemiological studies such as case-control and cohort studies. It was therefore

identified that additional methods are required in this area.

7.1.2 The adjusted instrumental variable estimator

In Chapters 3 and 4 three estimators for the analysis of a binary outcome study are

considered based on logistic regression. The direct estimator is the direct logistic regression

of the disease status on the phenotype. The standard IV estimator is the logistic regression

of the disease status on the predicted levels of the phenotype given the level of the genotype,

which is what might be implemented following the principles underlying two-stage least

squares estimation. The adjusted IV estimator includes the residuals as well as and the

predicted levels of the phenotype (or the observed levels of the phenotype as was discussed

in Section 3.3.2) from the regression of the phenotype on the genotype in the second stage

logistic regression.

It was found that in the presence of an unmeasured confounder the direct estimate from

the logistic regression of the disease status on the phenotype was positively biased, the

standard IV estimator was found to be attenuated towards the null and the adjusted

IV estimator was found to fall be between the two. However, it was also found that

significance tests for the adjusted IV estimator had inflated type I error whereas the type

I error values were at the nominal level for the standard IV estimator. Hence, the standard

estimator could be used for significance testing and the adjusted estimator for detecting

the magnitude of the phenotype-disease association.

The adjusted IV estimator has less bias because the residuals from the first stage regression

capture some of the information about the confounding variable. Due to the construction

of the simulations the bias in the direct, standard and adjusted estimators followed the

relationships given by Zeger et al. (1988). These relationships explain the difference be-

tween marginal and conditional parameter estimates in generalised linear mixed models.

In theory, it would be possible to use these theoretical expressions in the same way as the
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reliability ratio, from measurement error models, to back-transform the marginal estimate

to the conditional estimate. Realistically, it would be more convenient to compare the

values of the three estimates in order to assess the likely magnitude of the effect of the

unmeasured confounder.

In econometrics models of the form of the adjusted IV estimator are known as control

function approaches (Nichols, 2006). It was found that the idea behind the adjusted

estimator has been suggested previously using a probit regression by Rivers & Vuong

(1988) which has then been described by Wooldridge (2002, procedure 15.1) and also by

Nitsch et al. (2006). This modelling approach was also used by Nagelkerke et al. (2000)

using binary variables for their equivalent of the gene, phenotype and disease variables.

Nagelkerke et al. (2000) suggested that models of this form have reduced bias because

the first stage residuals fulfill Pearl’s back-door criterion (Pearl, 2000). Pearl’s back-door

criterion is closely related to the argument of Dawid (2002) about adjusting for one of two

related confounders (Didelez & Sheehan, 2007a). If Pearl’s back-door criterion does hold

for the adjusted IV estimator then estimates of the phenotype-disease association should

be assigned a causal interpretation.

It has also been suggested that in the form of the adjusted IV estimator proposed by

Rivers & Vuong (1988), which uses the observed values of the phenotype with the first

stage residuals as opposed to the predicted values, that the significance of the coefficient

of the first stage residuals is a test for the presence of confounding (Wooldridge, 2002).

In the form of the adjusted IV estimator in Chapter 3 this becomes a test of the equality

between the coefficients for the first stage residuals and predicted values. Although, it

can be noted that from a causal perspective Pearl (1998) is sceptical about the validity of

tests for the presence of unmeasured confounding variables.

It was found that the adjusted IV estimator had inflated type I error, which means that

the model is more likely to reject the null hypothesis when the null is true than the

nominal rate of 5%. The inflation of the type I error increased as the magnitude of the

unmeasured confounder increased. Therefore, an adjustment is required to increase the
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standard errors of the parameter estimates from the adjusted IV estimator to reduce the

type I error. The correction applied to the standard errors after the second stage of two-

stage least squares was discussed but it is not trivial to apply the correction to logistic

regression. Alternatively, the standard errors of the adjusted estimator could be derived

using a method such as bootstrapping until the appropriate correction is known.

7.1.3 A note about Pearl’s discussion of confounding

Pearl (1998) is sceptical about statistical tests for confounding because he argues that

the statistical/associational definition of confounding is not strict enough within a causal

framework. Pearl introduces a definition of confounding based on his do() operator and

argues that the associational definition based on the association criterion does not ensure

unbiased effect estimates and does not follow from the requirements of unbiasedness.

The associational definition of confounding can be expressed as; if T is the set of variables

that are not affected by X then X and Y are not confounded by T if for every member Z

of T :

(i) Z is not associated with X, P (x|z) = P (x), or

(ii) Z is not associated with Y within strata of X, P (y|z, x) = P (y|x).

Specifically, Pearl presents four reasons why the associational criterion fails; permissiveness

due to individuation, permissiveness due to small world assumptions, restriction due to

barren proxies and restriction due to incidental cancellations. Summarising each in turn,

permissiveness due to individuation says that although two variables Z1 and Z2 may

separately not confound X and Y they may still jointly confound X and Y . Permissiveness

due to small-world assumptions says that it is impractical to use the associational criterion

to test for the absence of confounding since an investigator can never know that they

have data on every potential confounder. Restriction due to barren proxies says that

the associational criterion of confounding is not able to exclude what are termed barren

proxies. A barren proxy is a variable which has no influence on X or Y but is a proxy
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for factors that do. Pearl then provides a modified form of the associational criterion to

exclude barren proxies by splitting the set T into two subsets T1 and T2. Then X and Y

are said to be unconfounded if:

1. T1 is not associated with X, and

2. T2 is not associated with Y given X and T1.

However, this definition is still not strong enough because it cannot overcome the fourth

criticism of restriction due to incidental cancellation. This says that the association crite-

rion fails to identify incidental cancellations. An incidental cancellation is an association

that might falsely classify some unconfounded situations as confounded and adjusting for

such a false confounder could bias the effect estimate.

Pearl’s causal definition of confounding says that if P (y|do(x)) is the probability of the

response Y = y under an intervention X = x calculated according to the causal model of

the data generating process, then X and Y are not confounded if and only if,

P (y|do(x)) = P (y|x). (7.1)

Pearl’s causal definition of confounding is similar the comparability view of confounding

of Greenland et al. (1989).

Pearl (1998) then defines what he terms stable unbiasedness which is robust to changes in

the size of the causal effect and remains intact as long as the causal model is unchanged.

Pearl effectively argues that whilst it is not possible to test for confounding it is possible

to test for stable unbiasedness which is a closely related idea. Pearl proposes the use of

his back-door criterion for identifying conditions of unbiasedness. The subtlety is that the

back-door criterion can guarantee unbiasedness for models of the form of Figure 7.1(a),

since X − E − Z − A − Y is a back-door path, but not of the form of Figure 7.1(b)

because there is no back-door path from X to Y since these variables remain correlated

after conditioning on Z. Although it is possible that a special choice of the parameter
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values in Figure 7.1(b) may coincidentally result in an unbiased effect estimate.

X Y

Z

E A

(a)

X Y

Z

(b)

Figure 7.1: DAGs demonstrating models for which stable unbiasedness can and cannot be
proved, taken from Pearl (1998, Figures 1 & 2).

Pearl argues that it is possible to disqualify a pair of variables X and Y as stably un-

confounded using his operational test for stable nonconfounding. Variables X and Y are

said to be stably uncofounded if and only if they have no common ancestor in a causal

diagram. Pearl’s operational test states that given a variable Z which is independent of

X and possibly associated with Y then X and Y are not stably unconfounded if either of

the following criteria are violated:

(i) P (x|z) = P (x), or,

(ii) P (y|z, x) = P (y|x).

Confusingly, these two conditions are almost identical to the two conditions of the as-

sociation criterion. Therefore, if just one variable if found that violates either of these

conditions proves that X and Y are not stably unconfounded.

Pearl also links the operational test of stable confounding to the concept of collapsibility

(see Section 1.3.1) because a violation of collapsibility will violate stable unbiasedness.

This detracts from the possibly that the adjusted IV estimator might have a causal inter-

pretation when used with the logit link despite the fact that it fulfills Pearl’s back-door

criterion and supports the case that the adjusted IV estimator could have a causal inter-

pretation for collapsible link functions such as the identity and log links.
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7.1.4 Multivariate meta-analysis

Chapter 5 considered multivariate meta-analysis models for Mendelian randomization

analyses. Bivariate meta-analysis models have been proposed for Mendelian random-

ization analyses based on the ratio of coefficients approach in which the gene-disease

and gene-phenotype effect estimates from each study are synthesised in the same model

(Minelli et al., 2004; Thompson et al., 2005). This modelling approach assumes that the

gene-disease log odds ratio can be treated as a continuous variable, an assumption which

is commonly used in univariate meta-analyses of binary outcome studies.

Existing meta-analysis models are typically based on the comparison of the heterozygotes

or rare homozygotes, or both, with the common homozygotes. The bivariate models were

extended to incorporate both genotype comparisons and hence all three genotypes. The

motivation for this is that it is important to be able to maximize the information that can

be included in an analysis in order to increase its statistical power. It was hypothesised

that the phenotype-disease association is common across both genotype comparisons and

as a consequence the estimated genetic model, as proposed in the genetic model-free ap-

proach (Minelli et al., 2005a,b), should be equivalent whether estimated using gene-disease

or gene-phenotype associations. In an example meta-analysis reporting the necessary out-

come measures no evidence was found to contradict these assumptions but further applied

examples are required to test these assumptions.

The presentation of the results of multivariate meta-analysis was also discussed. A four

column forest plot was presented which makes it easier to assess trends in each study’s

results across the four outcome measures. For Mendelian randomization meta-analyses

it is possible to plot the study-level gene-disease estimates versus the study-level gene-

phenotype estimates. A plot of this type helps to assess the pooled phenotype-disease

association by comparing whether the points fall along the line with gradient equal to

η̂. For meta-analyses employing the genetic model free approach, and considering two

genotype comparisons, it is possible to assess the pooled estimate of the genetic model-

free parameter λ by plotting either the pair gene-disease or the pair of gene-phenotype
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outcome measures against one another. Similarly to the previous plot, the points on the

plot should fall along the line with gradient equal to λ̂.

Additionally, in a meta-analysis applying the Mendelian randomization approach it is

possible that not all studies will report both gene-disease and gene-phenotype outcome

measures. Under the assumption that these outcome measures are missing at random it

is possible to include all the available information in the meta-analysis.

7.1.5 The ratio of coefficients approach

In Chapter 6 the ratio of coefficients approach was investigated using a Taylor series

approximation. The Taylor series approximation showed that there can be a small attenu-

ation in the ratio estimate for the phenotype-disease association, however this attenuation

should not be large enough to alter the conclusions of an analysis as long as the variance of

the genotype-phenotype association is small. The small attenuation in the ratio estimate

was demonstrated in the single cohort simulations.

The application of the Taylor series also provided an estimate of the variance of the ratio

estimate. For large sample sizes the confidence interval for the ratio estimate should be

similar using either the Taylor series or Fieller’s Theorem methods. A confidence interval

derived using Fieller’s Theorem is considered more appropriate if either or both of the

gene-disease or gene-phenotype associations have skewed distributions.

7.2 Topics for further research

The Mendelian randomization approach is relatively new and there is potential for devel-

opments in both applied and methodological research. This section discusses some possible

ares for further research using the approach.
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7.2.1 Applied research

The Mendelian randomization approach has gained popularity due to the recent increased

availability of genetic data in epidemiological studies. In particular the collection of geno-

type, phenotype and disease status information within the same study is becoming in-

creasingly common. This is demonstrated by the creation of large-scale Biobanks such

as the UK Biobank (Palmer, 2007) and large-scale collaborative genetic epidemiological

studies such as the Wellcome Trust case control consortium (The Wellcome Trust Case

Control Consortium, 2007).

In econometrics the use of multiple instrumental variables in an analysis is common.

Brunner et al. (2008) have applied this idea using three tagging SNPs in the gene for

C-reactive protein as instrumental variables. Another example of the use of multiple IVs

is given by Kivimäki et al. (2008, Appendices 1 & 2) who compared analyses using one

IV to analyses using multiple IVs. The authors found that because the multiple SNPs,

known as a haplotype, were in linkage disequilibrium that the analyses using either one

or multiple SNPs were very similar. However, there is scope for further analyses using

multiple genetic instrumental variables.

A related idea to including multiple polymorphisms in an analysis termed ‘factorial Mendelian

randomization’ was proposed by Davey Smith & Ebrahim (2003). The idea was developed

in response to a criticism that the rare homozygotes may not influence the disease to a

great extent. A factorial Mendelian randomization analysis would involve considering sev-

eral polymorphisms at more than one locus which influence an intermediate phenotype,

then combinations of polymorphisms at different loci could be found that produce differ-

ences in the intermediate phenotype that are substantial enough to generate detectable

effects on disease risk. If the loci are not in linkage disequilibrium interest would be in the

groups in which the combination of polymorphisms produce the most extreme difference

in the phenotype. However, this idea has not yet been implemented.

With the increasing availability of genetic data there is scope to apply Mendelian random-
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ization analyses to a wide range of polymorphisms, phenotypes and diseases in medical

research as long as there is sufficient biological knowledge about the underlying causal

pathway of disease.

7.2.2 Methodological research

There is considerable scope for investigating statistical models for Mendelian random-

ization analyses. Simulations similar to those performed for the adjusted IV estimator

could be performed investigating other methods. For example, for the case of a contin-

uous outcome measure, using an identity link function, Dunn et al. (2005) and Dunn &

Bentall (2007) compared the adjusted IV estimator and a generalised method of moments

approach and found that the methods gave similar but not identical parameter estimates.

Hence the adjusted IV estimator should be investigated using different generalized linear

models at the second stage and steps towards this are taken in Appendix C.

Some of the methods for instrumental variable methods that could be investigated for

Mendelian randomization analyses include the generalized method of moments approach

for estimating relative risks (Windmeijer & Santos Silva, 1997), the marginal structural

mean modelling approach (Robins et al., 2000) and the logistic structural mean modelling

approach (Vansteelandt & Goetghebeur, 2003). It can be noted that a detailed discussion

of instrumental variable theory for binary outcomes has been given from econometric

perspective by Chesher (2007).

A drawback of the logistic structural mean modelling approach of Vansteelandt & Goet-

ghebeur (2003) is that a fully saturated model is first of all fitted to the data. This means

that all the main effects, of the phenotype and measured confounding variables, and their

interaction terms with one another must be included in the model. However, this becomes

impractical if there are more than a small number of measured confounders. Addition-

ally, the estimation algorithm for fitting the logistic structural mean model relies on a

grid search to find the value of the phenotype-disease log odds ratio which minimises the

covariance between the genotype and the log odds of disease. Hence the fitting algorithm
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does not automatically return a standard error for the estimated phenotype-disease log

odds ratio. A confidence interval for the causal effect has to be derived using another

method.

In this thesis the scenario of a continuous phenotype with a binary disease outcome has

been considered, however, other scenarios of Mendelian randomization analyses could be

considered such as a binary phenotype and a binary outcome measure as used by Nagelk-

erke et al. (2000).

There is scope to apply the theory used in this thesis to the discussion of Mendelian

randomization methodology of Didelez & Sheehan (2007b). In particular, these authors

discuss three estimators based on causal inference for use with a binary disease outcome.

These estimators are the average causal effect (ACE), causal relative risk (CRR) and causal

odds ratio (COR). These estimators are all based on an Equation 8 in the paper which the

authors state cannot be evaluated because the distribution of the confounder is unknown.

Equation 8 in the paper is the same as Equation B.11 without the assumption that the

confounder is normally distributed in this thesis. The work in this thesis has shown that if

the confounder can be assumed to be normally distributed then the approximation which

results in Equation 3.45 can be used. Alternatively, the Neuhaus approximation, as given

in Equation B.16, which relies on fewer assumptions, could also be used to approximate

their Equation 8. In either case it should be possible to derive an algebraic approximation

for Equation 8 of Didelez & Sheehan (2007b) and hence derive an algebraic approximation

for each of the ACE, CRR and COR parameters. The approximations could then be

compared with the authors’ approach of using numerical integration to evaluate the three

estimators (Meng, 2008).

7.2.3 Meta-analysis

Instrumental variable analysis originated in econometrics and causal inference in which

meta-analysis is not as common as in biostatistics and due to its relatively early stage

of development a number of meta-analysis topics have not been discussed specifically for
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Mendelian randomization analyses.

The issue of publication bias has not been investigated in this thesis for Mendelian ran-

domization meta-analysis estimates. Publication bias is usually investigated using a funnel

plot of effect estimate variability plotted against the effect estimate. There are a number

of statistical tests to investigate publication bias including the regression tests of Egger

et al. (1997), Harbord et al. (2006) and Peters et al. (2006) and non-parametric methods

such as the trim and fill method (Duval & Tweedie, 2000a,b). A useful addition to a

funnel plot to help assess the possible presence of publication bias is to add contours of

statistical significance (Palmer et al., 2008b; Peters et al., 2008).

The product normal formulation (Spiegelhalter, 1998) was used in the PNF model in

Chapter 5, however, this method has not been extensively investigated in the Bayesian

literature. In particular, the product normal formulation is reliant upon the sequential

parameter updating under Gibbs sampling. As a result, it may be possible to induce an

informative prior distribution on the correlation between the outcomes when only vague

prior distributions are assumed for the other parameters in the model.

Also an individual patient data meta-analysis has not been performed implementing the

Mendelian randomization approach. The panel-data versions of the instrumental variable

models proposed in econometrics, such as Windmeijer & Santos Silva (1997), could be

investigated for individual patient data meta-analysis models.

7.3 Conclusion

The aim of the work in this thesis has been to extend statistical modelling approaches for

Mendelian randomization analyses. For the analysis of a single study the adjusted instru-

mental variable estimator has reduced bias compared to a standard estimator based on

the principles of two-stage least squares. However, the standard estimator is preferable for

testing the null hypothesis. In further work the adjusted IV estimator could be compared

with other modelling approaches from biostatistics, causal inference and econometrics.

138



Chapter 7. Discussion & conclusions

The meta-analysis methods investigated in this thesis combine and extend previous meta-

analysis. Meta-analysis is particularly relevant for the Mendelian randomization approach

since instrumental variable analyses require large sample sizes to detect small effect sizes

compared with standard analysis methods.

The application of genetic polymorphisms as instrumental variables within epidemiology

under the banner of the Mendelian randomization approach has recently received con-

siderable discussion. Whilst methods for instrumental variable analysis using continuous

outcome measures are well known, instrumental variable methods for discrete or categor-

ical outcome measures are not straightforward and are less well developed. The work in

this thesis is designed to contribute to the research into these methods for a single study

and for the meta-analysis of several studies.
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Glossary

Some genetic terminology is listed below, the entries have been compiled from Lawlor

et al. (2008d, Table 1), Elston et al. (2002) and Balding et al. (2007).

Alleles: variant forms of a genetic polymorphism.

Canalization: the process by which potentially disruptive influences on normal develop-

ment from genetic and environmental variations are damped by compensatory develop-

mental processes, i.e. a phenotype is kept within narrow boundaries in the presence of

disturbing environments or mutations.

Chromosome: an organized structure of DNA and protein that is found in cells. A chro-

mosome typically contains genes, regulatory elements and other nucleotide sequences.

Humans have 22 pairs of autosomal chromosomes and 1 pair of sex chromosomes.

Deoxyribonucleic acid (DNA): a molecule containing genetic instructions used in the devel-

opment and functioning of living organisms. DNA contains the instructions to construct

the components of cells, including proteins and ribonucleic acid (RNA) molecules. DNA

has four nucleotide bases; Adenine (A), Thymine (T), Cytosine (C) and Guanine (G).

The two strands in the double-helix are complementary (sense and anti-sense) such that

A combines with T, and C with G.
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Diploid: a cell with two versions of each chromosome, one from the father one from the

mother.

Gamete: a sex cell, sperm in males, egg in females. Two haploid gametes fuse to form a

diploid zygote.

Gene: comprises a sequence of DNA made up of introns, exons and regulatory regions,

related to transcription of a given Ribonucleic acid (RNA).

Genotype: two alleles inherited at a specific locus, if they are the same the genotype is

homozygous, if different heterozygous.

Hardy-Weinberg equilibrium: describes the distribution in a population of the genotypes

for a genetic locus given the frequencies of the common and rare alleles. In theory genotype

frequencies in a population are in equilibrium unless specific disturbing influences are

introduced. It is based on the assumptions that there is random mating, a large population,

and no migration, mutation or selection.

Haploid: a cell with a single version of each chromosome.

Haplotype: describes the combination of alleles from linked loci found on a single chro-

mosome.

Heterozygote: a single locus genotype consisting of two different alleles.

Homozygote: a single locus genotype consisting of two versions of the same allele.

Linkage: occurs when particular genetic loci are inherited jointly. For example, genetic

loci on the same chromosome tend to segregate together during meiosis.

Linkage disequilibrium (LD): the correlation between allelic states at different loci within

the population. LD describes a state that represents a departure from the hypothetical

situation in which all loci exhibit complete independence known as linkage equilibrium.

Note that LD is different from linkage.
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Locus: the position in a DNA sequence, it can refer to different scales such as a SNP, a

large region of DNA sequence or even a whole gene.

Meiosis: the process by which haploid gametes are formed from diploid somatic cells.

Mitosis: the process by which a somatic cell is replaced by two daughter somatic cells.

Mutation: a process that changes an allele.

Panmixia: describes random mating, it involves the mating of individuals regardless of

any physical, genetic, or social preference.

Phenotype: the observed characteristic under study, it could be measured as either a

quantitative, binary or categorical variable.

Pleiotropy: polymorphisms that have multiple phenotypic effects.

Single-nucleotide polymorphism (SNP): genetic variations in which one base in the DNA

is altered.

Zygote: an egg cell that has been fertilized by a sperm cell.
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Estimates from GLMs with a

random intercept

This appendix gives the derivation of relationships between marginal and conditional pa-

rameter estimates in generalized linear mixed models as the derivations were not provided

by Zeger et al. (1988). The relationships given by Neuhaus et al. (1991) are also discussed.

B.1 The Zeger equations

The derivation of the equations was not provided by Zeger et al. (1988) although an outline

of their derivation has been given by Hardin & Hilbe (2003, p96–97).

The modelling framework for GLMs with a random intercept is given by,

g(E(Yi|ui, Xi)) = X ′β + ui, where ui|Xi
iid∼ N(0, σ2), (B.1)

where g(·) is the link function of the GLM. Denoting the population averaged parameters

βm and the subject-specific parameters βc the marginal and conditional likelihoods are
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given by,

Lm = P (Y |X, βm) (B.2)

Lc =

∫
P (Y |u, βc)P (u|X)du. (B.3)

B.1.1 Identity link

For the identity link,

µm = E(y)

=

∫
g−1(Xβc + u)F (u)du

=

∫
(Xβ + u)

1√
2πσ2

exp

(
− u2

2σ2

)
du

= Xβ +

∫
u

1√
2πσ2

exp

(
− u2

2σ2

)
du

= Xβ + E(u)

= Xβ, (B.4)

since E(U) = 0. Hence the marginal and conditional estimates under the identity link are

identical.
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B.1.2 Log link

For the log link,

µm = E(y)

=

∫
g−1(Xβ + u)F (u)du

=

∫
exp(Xβ + u)

1√
2πσ2

exp

(−u2

2σ2

)
du

= exp(Xβ)

∫
exp(u)

1√
2πσ2

exp

(−u2

2σ2

)
du

= exp(Xβ) exp(σ2/2)

= exp

(
Xβ +

σ2

2

)
. (B.5)

The step from the fourth to the fifth lines is possible since U ∼ N(0, σ2) then V = exp(U)

has a lognormal distribution, with expectation, E(V ) = exp(σ2/2) (Johnson & Kotz,

1994, p211). Equivalently, it can be noted that this expression is the form of the moment

generating function of the normally distributed random variable U (Richardson et al.,

1987). Hence with a log link the marginal intercept is different from the conditional

estimate but the other parameters are the same.

B.1.3 Probit link

The derivation of the relationship for the probit link was given by Smith & Diggle (1998),

µm = E(y)

=

∫
g−1(Xβ + u)φ(u)du

=

∫
Φ(Xβ + u)φ(u)du. (B.6)
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Then it can be noted that where Z ∼ N(0, 1),

Φ(Xβ + u) = P (Z 6 Xβ + u)

= P

(
Z − u 6

Xβ√
1 + σ2

)

= Φ

(
Xβ√
1 + σ2

)
. (B.7)

This was given by Owen et al. (1964) and hence it is possible to continue,

µm =

∫
Φ

(
Xβ√
1 + σ2

)
φ(u)du

= Φ

(
Xβ√
1 + σ2

)
. (B.8)

This expression implies that for the probit link function the conditional parameter estimate

is multiplied by the generalized form of the s parameter of Gilmour et al. (1985), which

is equal to
√

1 − ICC (ICC: intra-class correlation coefficient).

B.1.4 Logit link

The relationship between marginal and conditional parameter estimates under the logit

link function simply includes an extra constant, c, compared with the equation for the

probit link. This is because it is based on using a probit approximation to the standardised

logistic cumulative distribution function. As such an identical argument holds for the

derivation of the relationship for the logit link to the one given for the probit link.

The value of the constant c is derived from a comparison of the cumulative distribu-

tion functions of the normal and logistic distributions. In particular, the variance of the

standardized logistic distribution is π2/3. The standardised forms of the cumulative dis-
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tribution functions of the normal and logistic distributions are given by F1 and F2 below,

F1(x) =
1√
2π

∫ ∞

−∞
e−1/2u2

du (B.9)

F2(x) =
1

1 + exp(−πx/
√

3)
. (B.10)

It is known that F1(16x/15) ≈ F2(x) (Johnson & Kotz, 1970) although a proof of this was

not given apart from the comparison of the functions shown in Figure B.1, which are in

good agreement.
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Figure B.1: Comparison of the Probit approximation to the standardized logistic cdf,
adapted from Carroll et al. (1995, Figure 3.5).

Therefore, in Equation 3.45 c = 16
√

3
15π (0.5881 to 4 d.p.). It can be noted that other very

similar values for c have been proposed such as
√

3.41
π (0.5878 to 4 d.p.) and 1/1.7017456

(0.5876 to 4 d.p.) (Johnson & Kotz, 1970).

Therefore, the derivation of the approximate relationship between marginal and condi-
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tional parameter estimates for the logit link is given by,

µm = E(y)

=

∫
g−1(Xβ + u)φ(u)du

=

∫
exp(Xβ + u)

1 + exp(Xβ + u)
φ(u)du (B.11)

≈
∫

Φ (c(Xβ + u))φ(u)du

= Φ

(
Xβ√

1 + c2σ2

)
. (B.12)

Line B.11 is Equation 8 of Didelez & Sheehan (2007b) assuming that U ∼ N(0, σ2).

B.2 The Neuhaus equations

In a series of papers including; Neuhaus et al. (1991), Neuhaus (1993), Neuhaus & Jewell

(1993) and Neuhaus (1998), Neuhaus proposed alternative forms for the relationships

between marginal and conditional parameter estimates for generalised linear mixed models.

These are given below as per Neuhaus & Jewell (1993, Table 3), where µ denotes the linear

predictor of the GLM,

Identity : βm ≈ βc (B.13)

Log : βm ≈ βc (B.14)

Probit : βm ≈ βc ·
E[φΦ−1(µ)]

φΦ−1(E(µ))
(B.15)

Logit : βm ≈ βc ·
{

1 − var(µ)

E(µ)E(1 − µ)

}
. (B.16)

The expression for the logit link function was also given by Gail (1988).
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B.3 Discussion

Other formulae based on the Zeger and Neuhaus approaches have been given by several

authors. For example, the relationship between the marginal and conditional parameter

estimates for models using the complementary log-log link has been given in the form

of Zeger by Wang & Louis (2003) and in the form of Neuhaus by Jewell & Shiboski

(1990). The relationship between marginal and conditional parameter estimates when the

random effects are exponentially and double-exponentially distributed instead of normally

distributed have been given in the form of Zeger by Ritz & Spiegelman (2004). For a

probit link function Chao et al. (1997) demonstrated the circumstances under which the

Zeger and Neuhaus approximations are equivalent.

In particular, the relationship between subject-specific and population averaged or con-

ditional and marginal parameter estimates for logistic regression has been used widely in

statistical research. The following are a few examples; (Carroll et al., 1984), Stefanski

(1985), Liang & Liu (1991), Hu et al. (1998), Carroll & Stefanski (1994), Carroll et al.

(1995, Section 3.9.2), Ten Have et al. (1996), (Diggle et al., 2002) and Ten Have et al.

(2003).
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An adjusted instrumental variable

estimator: results for other link

functions

C.1 Introduction

This chapter gives results of further simulations like those in Chapter 4 for different gen-

eralized linear models at the second stage of the analysis, namely; probit, linear and

Poisson regression models under the inverse normal cumulative distribution, identity and

log link functions. The motivation for this work is to compare the standard and adjusted

IV estimators for these different generalized linear models and relates to theory given in

Appendix B.

C.2 Probit link

The simulations performed to investigate the use of probit regression at the second stage

were identical to the simulations in Chapter 4 which used logistic regression at the second
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stage apart from that the inverse normal cumulative distribution function was used to

generate the probabilities of disease instead of the inverse of the logit function,

pi = Φ−1(β0 + β1xi + β2ui). (C.1)

Considering the simulations in Chapter 4 and the closely related theory for the probit link

in Appendix B it is expected that the two IV estimators will exhibit attenuation bias and

that in the presence of the confounding variable the direct estimator will be positively

biased. The results of these simulations for the estimates of β1 are given in Figure 4.12 in

Chapter 4.

As under the logit link the coverage of the 95% Wald confidence intervals for β1 were

investigated, as shown in Figure C.1, and the adjusted IV estimator again has better

coverage than the standard estimator because of its smaller bias.
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Figure C.1: Coverage of the Wald test for β1 with the probit link.

The type I error of the Wald tests for the estimates of β1 are shown in Figure C.2.
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Figure C.2: Type I error of the Wald test for β1 with the probit link.

As with the logit link simulations the adjusted estimator had inflated type I error with

respect to the nominal level of 5% whereas the standard estimator was at the nominal

level. For completeness the estimates of β0 from the three estimators are shown in Figure

C.3.

As with the logit link under the probit link the estimates of β0 also follow the Zeger

relationship between the marginal and conditional estimates.

In Appendix B the formulae of Zeger and Neuhaus relating marginal and conditional

parameter estimates in generalized linear mixed models were given. Figure C.4 shows

the comparison of the attenuation in the standard IV estimator, which is in line with the

Zeger formula, and the attenuation in β1 as given by the Neuhaus formula. It can be seen

that the Neuhaus and Zeger approximations follow the same form although they are not

identical they become asymptotic as the value of the confounder coefficient β2 increases.

The agreement between the Zeger and Neuhaus methods is better for the probit link than

for the logit link as shown in Figure 4.11.
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Figure C.3: Theoretical and simulated estimates of β0 with the probit link.
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C.3 Identity link

For the simulations using the identity link a continuous variable was simulated to represent

disease status instead of a binary outcome disease variable,

yi ∼ N(β0 + β1xi + β2ui, σ2
y) (C.2)

From the theory in Appendix B it is expected that the standard and adjusted estimators

will not be attenuated because there is no attenuation of marginal with respect to condi-

tional estimates under the identity link. It is also expected that the standard and adjusted

estimators of β1 will be at the set value of β1 because large sample sizes were used in the

cohorts and two-stage least squares should provide a consistent estimate of β1. Figure C.5

shows that these expectations were found to hold.
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Figure C.5: Theoretical and simulated estimates of β1 with the identity link.

Figure C.6 shows the theoretical and simulated values of β0 under the identity link. Under

the identity link β0 was set to 0.05.
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Figure C.6: Theoretical and simulated estimates of β0 with the identity link.

The coverage of the Wald test of the standard and direct estimators of β1 under the

identity link is shown in Figure C.7. In this instance since the standard and adjusted

estimators were unbiased the coverage will not be determined by the bias as was the case

for the logit and probit links. For the panel with α2 = 0 the coverage of the standard

estimator was greater than the nominal 95% whereas the adjusted estimator was exactly

at 95%. For the other three panels with α2 = 1, 2, 3 the coverage of the standard estimator

was approximately 100% whilst the coverage of the adjusted estimator started at 95% but

decreased as the value of β2 increased.

The type I error of the Wald test of the estimators of β1 under the identity link is shown in

Figure C.8. The type I error of the Wald test of the standard estimator is at the nominal

level of 5%. The type I error of the adjusted estimate is inflated when the magnitude of

the confounder is large.

Figure C.9 is for the same set of simulations, it shows that the type I error of the standard

IV estimator and the type I error of two-stage least squares, using corrected standard
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Figure C.7: Coverage the Wald test of β1 under the identity link.
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Figure C.8: Type I error of the Wald test of β1 under the identity link.

156



Appendix C. An adjusted instrumental variable estimator: results for other link functions

errors are both at the nominal level in a large sample.
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Figure C.9: Comparing the type I error of the Wald test of β1 for the standard IV &
two-stage least squares.

In Chapter 1 it was described that a test of the strength of an instrumental variable was

given by the F statistic from the first stage linear regression. In Chapter 4 Figure 4.10

investigated a related measure of strength the R2 value from the first stage regression.

Figure C.10 examines an idea to assess the magnitude of the unmeasured confounder by

considering the correlation between the first and second stage residuals from the two-stages

of two-stage least squares estimation.

In the panel with α2 = 0 the value of the correlation between the first and second stage

residuals is not informative. However, in the subsequent panels when the confounder acts

truly as a confounder then the value of the correlation increased as the magnitude of the

confounder increased.
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IV estimator.
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C.4 Log link

Poisson regression uses a log link function in the terminology of generalised linear models

and can be used to estimate a relative risks. The theory from Appendix B says in the

second stage the estimate of β1 should not be affected whilst the estimate of β0 will be

biased in proportion to the variance of the second stage error terms.

Figure C.11 shows the estimates of β1 for the log link. The three estimates were equivalent

in the first panel for α2 = 0. In the remaining panels as expected the direct estimate was

positively biased by the confounder, however, surprisingly there was a difference between

the standard and adjusted estimators.
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Figure C.11: The three estimators of β1 under the log link.

Figure C.12 shows the estimates of the intercept in the linear predictor β0, the baseline log

disease risk, when the log link is used with the three estimators. The plots show that the

baseline risk for the standard IV estimator is substantially increased, whereas the adjusted

IV and direct estimates are much closer to the set value of log(0.05) = −2.995.
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Figure C.12: Simulation and theoretical estimates of β0 under the log link.

Figure C.13 shows simulation results using a rarer baseline probability of disease controlled

through the β0 parameter, β0 = log(0.0005), and a larger cohort size of 30,000. This

ensured that no more than 5% of subjects had a baseline probability of disease of more

than 5%. The standard and adjusted parameters are now equivalent as expected.

In conclusion, the results of the simulations presented for the identity, log and probit link

functions follow the relationship between marginal and conditional parameter estimates

in generalised linear models with a normally distributed random intercept.
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Figure C.13: The three estimators of β1 under the log link when α2 = 1 with a smaller
baseline risk of disease.
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R and Stata code

D.1 R and Stata programs for instrumental variable analy-

sis

The following is a list of commands for performing instrumental variable analysis in Stata

and R.

Stata programs include: ivreg or ivregress in version 10, ivprobit, ivtobit and

xtivreg. User written Stata programs include: ivreg2 (Baum et al., 2003, 2007), qvf

(Hardin & Carroll, 2003b), cdsimeq (Keshk, 2003), xtivreg2 (Schaffer, 2005) and cmp

(Roodman, 2008).

R packages include: the sem (Fox, 2008) package includes the tsls function, the systemfit

package (Henningsen & Hamann, 2007) can perform varieties of two-stage least squares

analyses and the AER package also contains the ivreg function for two-stage least squares

regression.
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D.2 R code for the simulations in Chapter 4

setwd("/export/home/other/tmp8/logit")

# function for mr cohort study

mrsimstudy.logit <- function(q,obs,psd,alpha0,alpha1,beta0,beta1,alpha2=0,beta2=0,usd=1){

# usd = confounder standard deviation

# preliminaries

genotype <- seq(0,0,len=obs)

disease <- seq(0,0,len=obs)

rand.unif.g <- runif(n=obs)

rand.unif.d <- runif(n=obs)

confounder <- rnorm(n=obs,mean=0,sd=usd)

# genotype

genotype.1 <- rbinom(n=obs,size=1,prob=q)

genotype.2 <- rbinom(n=obs,size=1,prob=q)

genotype <- genotype.1 + genotype.2

# phenotype

phenotype.lp <- alpha0 + alpha1*genotype + alpha2*confounder

phenotype <- rnorm(n=obs,mean=phenotype.lp,sd=psd)

# disease status

p.disease <- plogis(beta0 + beta1*phenotype + beta2*confounder)

disease[p.disease >= rand.unif.d] <- 1

data <- data.frame(genotype=genotype, phenotype=phenotype,

disease=disease, confounder=confounder)

# return results

return(list(genotype=genotype, phenotype=phenotype, disease=disease,

confounder=confounder, p.disease=p.disease, data=data))

}

# function for the 3 estimators

mranalysis.logit.extra <- function(study){

# table: disease status by genotype

tab1 <- table(study$disease,study$genotype)

# table: proportion in each genotype by disease status

tab2 <- prop.table(tab1,1)

# direct model

direct <- glm(study$disease~study$phenotype, family=binomial)

direct.ci <- direct$coef + cbind(c(-1,-1),c(1,1))*qnorm(.975)*sqrt(diag(vcov(direct)))

direct.sum <- summary(direct)

# stage 1

stage1 <- lm(study$phenotype~study$genotype)

stage1.ci <- confint(stage1)

stage1.sum <- summary(stage1)

# naive model

naive <- glm(study$disease~stage1$fitted, family=binomial)

naive.ci <- naive$coef + cbind(c(-1,-1),c(1,1))*qnorm(.975)*sqrt(diag(vcov(naive)))

naive.sum <- summary(naive)

# adjusted model

adjusted <- glm(study$disease~stage1$fitted + stage1$residuals, family=binomial)

adjusted.ci <- adjusted$coef + cbind(c(-1,-1,-1),c(1,1,1))*qnorm(.975)*sqrt(diag(vcov(adjusted)))

adjusted.sum <- summary(adjusted)

# analysis to check the simulation

check <- glm(study$disease~study$phenotype + study$confounder, family=binomial)

check.ci <- check$coef + cbind(c(-1,-1,-1),c(1,1,1))*qnorm(.975)*sqrt(diag(vcov(check)))
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check.sum <- summary(check)

# correlation between stage 1 residuals and stage 2 anscombe residuals

naive.corr <- cor(stage1$residuals, naive.sum$deviance.resid)

adjusted.corr <- cor(stage1$residuals, adjusted.sum$deviance.resid)

# return results

return(list(tab1=tab1,tab2=tab2,

direct=direct, direct.ci=direct.ci, direct.sum=direct.sum,

stage1=stage1, stage1.ci=stage1.ci, stage1.sum=stage1.sum,

naive=naive, naive.ci=naive.ci, naive.sum=naive.sum,

adjusted=adjusted, adjusted.ci=adjusted.ci, adjusted.sum=adjusted.sum,

check=check, check.ci=check.ci, check.sum=check.sum,

naive.corr=naive.corr, adjusted.corr=adjusted.corr))

}

# simulations

set.seed(1234)

q <- 0.3

obs <- 10000

alpha0 <- 0

alpha1 <- 1

alpha2 <- 0:3

p <- 0.05

beta0 <- qlogis(p)

beta1 <- 1

beta2 <- seq(0, 3, by=0.25)

psd <- 1

usd <- 1

its <- 10000

sig <- 0.05

resnames <- c("dir.b0","dir.b0.se","dir.b0.z","dir.b0.p",

"dir.b1","dir.b1.se","dir.b1.z","dir.b1.p",

"nai.b0","nai.b0.se","nai.b0.z","nai.b0.p",

"nai.b1","nai.b1.se","nai.b1.z","nai.b1.p",

"adj.b0","adj.b0.se","adj.b0.z","adj.b0.p",

"adj.b1","adj.b1.se","adj.b1.z","adj.b1.p",

"s1.r2","naive.corr","adjusted.corr",

"dir.b1.cov","nai.b1.cov","adj.b1.cov",

"dir.b1.pow","nai.b1.pow","adj.b1.pow",

"dir.b0.sim.se","nai.b0.sim.se","adj.b0.sim.se",

"dir.b1.sim.se","nai.b1.sim.se","adj.b1.sim.se",

"s1.r2.sim.se","nai.corr.sim.se","adj.corr.sim.se",

"dir.b1.cov.sim.se","nai.b1.cov.sim.se","adj.b1.cov.sim.se",

"dir.b1.pow.sim.se","nai.b1.pow.sim.se","adj.b1.pow.sim.se",

"b0","b1","b2",

"a0","a1","a2",

"psd","usd","q","p")

res <- matrix(nrow=length(alpha2)*length(beta2), ncol=length(resnames))

colnames(res) <- resnames

m <- 1

for(j in 1:length(alpha2)){

for(k in 1:length(beta2)){

print(Sys.time())

itresnames <- c("dir.b0","dir.b0.se","dir.b0.z","dir.b0.p",

"dir.b1","dir.b1.se","dir.b1.z","dir.b1.p",

"nai.b0","nai.b0.se","nai.b0.z","nai.b0.p",

"nai.b1","nai.b1.se","nai.b1.z","nai.b1.p",

"adj.b0","adj.b0.se","adj.b0.z","adj.b0.p",

"adj.b1","adj.b1.se","adj.b1.z","adj.b1.p",

"s1.r2","naive.corr","adjusted.corr",

164



Appendix D. R and Stata code

"dir.b1.cov","nai.b1.cov","adj.b1.cov",

"dir.b1.pow","nai.b1.pow","adj.b1.pow")

itres <- matrix(nrow=its, ncol=length(itresnames))

colnames(itres) <- itresnames

print(m)

for(i in 1:its){

study <- mrsimstudy.logit(q=q, obs=obs,

alpha0=alpha0, alpha1=alpha1, alpha2=alpha2[j],

beta0=beta0, beta1=beta1, beta2=beta2[k],

psd=1, usd=1)

analysis <- mranalysis.logit.extra(study)

dir.ci <- analysis$direct.sum$coefficients[2,1] + c(-1,1)*qnorm(.975)*analysis$direct.sum$coefficients[2,2]

nai.ci <- analysis$naive.sum$coefficients[2,1] + c(-1,1)*qnorm(.975)*analysis$naive.sum$coefficients[2,2]

adj.ci <- analysis$adjusted.sum$coefficients[2,1] + c(-1,1)*qnorm(.975)*analysis$adjusted.sum$coefficients[2,2]

itres[i,1:4] <- analysis$direct.sum$coefficients[1,]

itres[i,5:8] <- analysis$direct.sum$coefficients[2,]

itres[i,9:12] <- analysis$naive.sum$coefficients[1,]

itres[i,13:16] <- analysis$naive.sum$coefficients[2,]

itres[i,17:20] <- analysis$adjusted.sum$coefficients[1,]

itres[i,21:24] <- analysis$adjusted.sum$coefficients[2,]

itres[i,25:27] <- c(analysis$stage1.sum$r.squared, analysis$naive.corr, analysis$adjusted.corr)

itres[i,"dir.b1.cov"] <- as.numeric(dir.ci[1] <= beta1 & dir.ci[2] >= beta1)

itres[i,"nai.b1.cov"] <- as.numeric(nai.ci[1] <= beta1 & nai.ci[2] >= beta1)

itres[i,"adj.b1.cov"] <- as.numeric(adj.ci[1] <= beta1 & adj.ci[2] >= beta1)

itres[i,"dir.b1.pow"] <- as.numeric(analysis$direct.sum$coefficients[2,4] < sig)

itres[i,"nai.b1.pow"] <- as.numeric(analysis$naive.sum$coefficients[2,4] < sig)

itres[i,"adj.b1.pow"] <- as.numeric(analysis$adjusted.sum$coefficients[2,4] < sig)

study <- analysis <- NULL

if(i%%100 == 0){cat(".\n")}else{cat(".")}

}

res[m,1:length(itresnames)] <- colMeans(itres, na.rm=TRUE)

res[m,"dir.b0.sim.se"] <- sqrt(var(itres[,"dir.b0"])/its)

res[m,"nai.b0.sim.se"] <- sqrt(var(itres[,"nai.b0"])/its)

res[m,"adj.b0.sim.se"] <- sqrt(var(itres[,"adj.b0"])/its)

res[m,"dir.b1.sim.se"] <- sqrt(var(itres[,"dir.b1"])/its)

res[m,"nai.b1.sim.se"] <- sqrt(var(itres[,"nai.b1"])/its)

res[m,"adj.b1.sim.se"] <- sqrt(var(itres[,"adj.b1"])/its)

res[m,"s1.r2.sim.se"] <- sqrt(var(itres[,"s1.r2"])/its)

res[m,"nai.corr.sim.se"] <- sqrt(var(itres[,"naive.corr"])/its)

res[m,"adj.corr.sim.se"] <- sqrt(var(itres[,"adjusted.corr"])/its)

res[m,"dir.b1.cov.sim.se"] <- sqrt(res[m,"dir.b1.cov"]*(1 - res[m,"dir.b1.cov"])/its)

res[m,"nai.b1.cov.sim.se"] <- sqrt(res[m,"nai.b1.cov"]*(1 - res[m,"nai.b1.cov"])/its)

res[m,"adj.b1.cov.sim.se"] <- sqrt(res[m,"adj.b1.cov"]*(1 - res[m,"adj.b1.cov"])/its)

res[m,"dir.b1.pow.sim.se"] <- sqrt(res[m,"dir.b1.pow"]*(1 - res[m,"dir.b1.pow"])/its)

res[m,"nai.b1.pow.sim.se"] <- sqrt(res[m,"nai.b1.pow"]*(1 - res[m,"nai.b1.pow"])/its)

res[m,"adj.b1.pow.sim.se"] <- sqrt(res[m,"adj.b1.pow"]*(1 - res[m,"adj.b1.pow"])/its)

res[m,"b0"] <- beta0

res[m,"b1"] <- beta1

res[m,"b2"] <- beta2[k]

res[m,"a0"] <- alpha0

res[m,"a1"] <- alpha1

res[m,"a2"] <- alpha2[j]

res[m,"psd"] <- psd

res[m,"usd"] <- usd

res[m,"q"] <- q

res[m,"p"] <- p

save(res, file="/export/data/hs/tmp8/logit/mr.logit.extra.Rdata")

m <- m + 1
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cat("\n")

}

}
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D.3 Code for Chapter 5

D.3.1 R code for the maximum likelihood estimation of the MVMR

model

The following code is for studies with complete data.

library(Matrix) # for kronecker()

library(foreign)

setwd("Z:/Mendelian.Randomization/Example/R/data")

#

# data edit

#

data <- read.dta("mann.dta")

data <- data[-19,]

data[,"year"] <- c(1999,2000,1996,1998,2000,1998,1996,1999,2000,

2000,1998,1999,1998,1999,1996,2000,1996,1996)

zerotest <- data[1:13,4:15]==0

data[1:13,4:15][zerotest] <- 0.5

attach(data)

# log odds ratios

logor1 <- log((Ss.case*SS.control)/(Ss.control*SS.case))

vlogor1 <- 1/Ss.case + 1/SS.control + 1/Ss.control + 1/SS.case

plogor1 <- 1/vlogor1

logor2 <- log((ss.case*SS.control)/(ss.control*SS.case))

vlogor2 <- 1/ss.case + 1/SS.case + 1/ss.control + 1/SS.control

plogor2 <- 1/vlogor2

covlogor12 <- 1/SS.control + 1/SS.case

logor1low <- logor1 - qnorm(.975)*sqrt(vlogor1)

logor1upp <- logor1 + qnorm(.975)*sqrt(vlogor1)

logor2low <- logor2 - qnorm(.975)*sqrt(vlogor2)

logor2upp <- logor2 + qnorm(.975)*sqrt(vlogor2)

selogor1 <- sqrt(vlogor1)

selogor2 <- sqrt(vlogor2)

# differences in means

d1 <- Ss.m - SS.m

vd1 <- Ss.se^2 + SS.se^2

pd1 <- 1/vd1

d2 <- ss.m - SS.m

vd2 <- ss.se^2 + SS.se^2

pd2 <- 1/vd2

covd12 <- SS.se^2

d1low <- d1 - qnorm(.975)*sqrt(vd1)

d1upp <- d1 + qnorm(.975)*sqrt(vd1)

d2low <- d2 - qnorm(.975)*sqrt(vd2)

d2upp <- d2 + qnorm(.975)*sqrt(vd2)

sed1 <- sqrt(vd1)

sed2 <- sqrt(vd2)

# scale the phenotype differences

scd1 <- d1/0.05

scd2 <- d2/0.05

scvd1 <- vd1/0.05^2

scpd1 <- 1/scvd1

scvd2 <- vd2/0.05^2

scpd2 <- 1/scvd2

sccovd12 <- covd12/0.05^2

scd1low <- d1low/0.05
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scd1upp <- d1upp/0.05

scd2low <- d2low/0.05

scd2upp <- d2upp/0.05

scsed1 <- sed1/0.05

scsed2 <- sed2/0.05

type <- c(rep(1,10), rep(2,3), rep(3,5))

data <- data.frame(data, logor1, vlogor1, plogor1,

logor2, vlogor2, plogor2, covlogor12,

logor1low, logor1upp, logor2low, logor2upp,

selogor1, selogor2,

d1, vd1, pd1,

d2, vd2, pd2, covd12,

d1low, d1upp, d2low, d2upp,

sed1, sed2,

scd1, scvd1, scpd1,

scd2, scvd2, scpd2, sccovd12,

scd1low, scd1upp, scd2low, scd2upp,

scsed1, scsed2,

type)

save(data, file="mann.Rdata")

rm(list=ls())

load("mann.Rdata")

cdata <- data[data$type==1,]

#

# common eta - complete data

#

reml.log.like <- function(beta, logor1, logor2, vlogor1, vlogor2,

covlogor12, d1, d2, vd1, vd2, covd12){

eta <- beta[1]

mu1 <- beta[2]

mu2 <- beta[3]

logtau1sq <- beta[4]

logtau2sq <- beta[5]

transrho <- beta[6]

tau1 <- sqrt(exp(logtau1sq))

tau2 <- sqrt(exp(logtau2sq))

rho <- (exp(transrho) - 1)/(exp(transrho) + 1)

loglike <- NULL

BETA <- c(eta*mu1, mu1, eta*mu2, mu2)

W <- B <- SIGMA <- matrix(nrow=4,ncol=4)

for (i in 1:length(logor1)) {

Y <- c(logor1[i], d1[i], logor2[i], d2[i])

W[1,] <- c(vlogor1[i], 0, covlogor12[i], 0)

W[2,] <- c(0, vd1[i], 0, covd12[i])

W[3,] <- c(covlogor12[i], 0, vlogor2[i], 0)

W[4,] <- c(0, covd12[i], 0, vd2[i])

Bleft <- matrix(c(tau1^2, rho*tau1*tau2, rho*tau1*tau2, tau2^2), nrow=2)

Bright <- matrix(c(eta^2, eta, eta, 1), nrow=2)

B <- kronecker(Bleft, Bright)

SIGMA <- W + B

detSIGMA <- det(SIGMA)

if(detSIGMA == 0){break} # check of invertibility

invSIGMA <- solve(SIGMA)
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loglike[i] <- -0.5*(log(detSIGMA) + t(Y - BETA)%*%invSIGMA%*%(Y - BETA))

}

-1*sum(loglike)

}

inits <- rep(0,6)

remlopt <- optim(inits, reml.log.like, hessian=T, control=list(maxit=5000),

logor1=cdata$logor1, logor2=cdata$logor2,

vlogor1=cdata$vlogor1, vlogor2=cdata$vlogor2, covlogor12=cdata$covlogor12,

d1=cdata$scd1, d2=cdata$scd2, vd1=cdata$scvd1, vd2=cdata$scvd2, covd12=cdata$sccovd12)

cat("mr model - complete outcome data \n")

remlopt$convergence

remlopt$hessian

det(remlopt$hessian)

INFO <- solve(remlopt$hessian)

SE <- diag(chol(INFO))

CI <- remlopt$par + cbind(rep(-1,6), rep(1,6))*qnorm(.975)*SE

cat("logORpd: ", remlopt$par[1], "\n")

cat("logORpd CI: ", CI[1,], "\n")

cat("ORpd: ", exp(remlopt$par[1]), "\n")

cat("ORpd CI: ", exp(CI[1,]), "\n")

cat("delta2: ", remlopt$par[2], "\n")

cat("delta2 CI: ", CI[2,], "\n")

cat("delta3: ", remlopt$par[3], "\n")

cat("delta3 CI: ", CI[3,], "\n")

t1sq <- exp(remlopt$par[4])

cat("tau1sq: ", t1sq, "\n")

cat("tau1sq CI:", exp(CI[4,]), "\n")

t2sq <- exp(remlopt$par[5])

cat("tau2sq: ", t2sq, "\n")

cat("tau2sq CI: ", exp(CI[5,]), "\n")

rho <- (exp(remlopt$par[6]) - 1)/(exp(remlopt$par[6]) + 1)

cat("rho: ", rho, "\n")

rhoCI <- c((exp(CI[6,1]) - 1)/(exp(CI[6,1]) + 1), (exp(CI[6,2]) - 1)/(exp(CI[6,2]) + 1))

cat("rho CI: ", rhoCI, "\n")

cat("lambda: ", remlopt$par[2]/remlopt$par[3], "\n")

lambdaCI <- c(CI[2,1]/CI[3,1], CI[2,2]/CI[3,2])

cat("lambda CI: ", lambdaCI, "\n")

B1left <- matrix(c(t1sq, rho*sqrt(t1sq)*sqrt(t2sq), rho*sqrt(t1sq)*sqrt(t2sq), t2sq), nrow=2)

B1right <- matrix(c(remlopt$par[1]^2, remlopt$par[1], remlopt$par[1], 1), nrow=2)

B1 <- kronecker(B1left, B1right)

B1left; B1right; B1

det(B1left); det(B1right); det(B1)

loglike1 <- -remlopt$value # log likelihood

cat("log-likelihood: ", loglike1, "\n")

cat("\n")

The following code is for studies with complete data or missing either gene-disease or
gene-phenotype data.

#

# MVMR model - all data

#

reml.log.like.all <- function(beta, logor1, logor2, vlogor1, vlogor2,

covlogor12, d1, d2, vd1, vd2, covd12, type){
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eta <- beta[1]

mu1 <- beta[2]

mu2 <- beta[3]

logtau1sq <- beta[4]

logtau2sq <- beta[5]

transrho <- beta[6]

tau1 <- sqrt(exp(logtau1sq))

tau2 <- sqrt(exp(logtau2sq))

rho <- (exp(transrho) - 1)/(exp(transrho) + 1)

loglike <- NULL

n <- length(logor1)

for (i in 1:n) {

if(type[i] == 1){ # complete outcomes

BETA <- c(eta*mu1, mu1, eta*mu2, mu2)

W <- B <- SIGMA <- matrix(nrow=4, ncol=4)

Y <- c(logor1[i], d1[i], logor2[i], d2[i])

W[1,] <- c(vlogor1[i], 0, covlogor12[i], 0)

W[2,] <- c(0, vd1[i], 0, covd12[i])

W[3,] <- c(covlogor12[i], 0, vlogor2[i], 0)

W[4,] <- c(0, covd12[i], 0, vd2[i])

Bleft <- matrix(c(tau1^2, rho*tau1*tau2, rho*tau1*tau2, tau2^2), nrow=2)

Bright <- matrix(c(eta^2, eta, eta, 1), nrow=2)

B <- kronecker(Bleft, Bright)

}

if(type[i] == 2){ # gene-disease outcomes only

BETA <- c(eta*mu1, eta*mu2)

W <- B <- SIGMA <- matrix(nrow=2, ncol=2)

Y <- c(logor1[i], logor2[i])

W[1,] <- c(vlogor1[i], covlogor12[i])

W[2,] <- c(covlogor12[i], vlogor2[i])

B[1,] <- c(eta^2*tau1^2, eta^2*rho*tau1*tau2)

B[2,] <- c(eta^2*rho*tau1*tau2, eta^2*tau2^2)

}

if(type[i] == 3){ # gene-phenotype outcomes only

BETA <- c(mu1, mu2)

W <- B <- SIGMA <- matrix(nrow=2, ncol=2)

Y <- c(d1[i], d2[i])

W[1,] <- c(vd1[i], covd12[i])

W[2,] <- c(covd12[i], vd2[i])

B[1,] <- c(tau1^2, rho*tau1*tau2)

B[2,] <- c(rho*tau1*tau2, tau2^2)

}

SIGMA <- W + B

detSIGMA <- det(SIGMA)

if(detSIGMA == 0){break} # check of invertibility

invSIGMA <- solve(SIGMA)

loglike[i] <- -0.5*(log(detSIGMA) + t(Y - BETA)%*%invSIGMA%*%(Y - BETA))

}

-1*sum(loglike)

}

inits <- rep(0.1, 6)

fit <- optim(inits, reml.log.like.all, hessian=T, control=list(maxit=5000),
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logor1=data$logor1, logor2=data$logor2,

vlogor1=data$vlogor1, vlogor2=data$vlogor2, covlogor12=data$covlogor12,

d1=data$scd1, d2=data$scd2,

vd1=data$scvd1, vd2=data$scvd2,

covd12=data$sccovd12, type=data$type)

cat("\n mr model - all data \n")

fit$convergence

fit$hessian

det(fit$hessian)

INFO3 <- solve(fit$hessian)

SE3 <- diag(chol(INFO3))

CI3 <- fit$par + cbind(rep(-1,6), rep(1,6))*qnorm(.975)*SE3

cat("logORpd: ", fit$par[1], "\n")

cat("logORpd CI: ", CI3[1,], "\n")

cat("ORpd: ", exp(fit$par[1]), "\n")

cat("ORpd CI: ", exp(CI3[1,]), "\n")

cat("delta2: ", fit$par[2], "\n")

cat("delta2 CI: ", CI3[2,], "\n")

cat("delta3: ", fit$par[3], "\n")

cat("delta3 CI: ", CI3[3,], "\n")

t1sq <- exp(fit$par[4])

cat("tau1sq: ", t1sq, "\n")

cat("tau1sq CI:", exp(CI3[4,]), "\n")

t2sq <- exp(fit$par[5])

cat("tau2sq: ", t2sq, "\n")

cat("tau2sq CI: ", exp(CI3[5,]), "\n")

rho <- (exp(fit$par[6]) - 1)/(exp(fit$par[6]) + 1)

cat("rho: ", rho, "\n")

rhoCI <- c((exp(CI3[6,1]) - 1)/(exp(CI3[6,1]) + 1), (exp(CI3[6,2]) - 1)/(exp(CI3[6,2]) + 1))

cat("rho CI: ", rhoCI, "\n")

cat("lambda: ", fit$par[2]/fit$par[3], "\n")

lambdaCI3 <- c(CI3[2,1]/CI3[3,1], CI3[2,2]/CI3[3,2])

cat("lambda CI: ", lambdaCI3, "\n")

B3left <- matrix(c(t1sq, rho*sqrt(t1sq)*sqrt(t2sq), rho*sqrt(t1sq)*sqrt(t2sq), t2sq), nrow=2)

B3right <- matrix(c(fit$par[1]^2, fit$par[1], fit$par[1], 1), nrow=2)

B3 <- kronecker(B3left, B3right)

B3left; B3right; B3

det(B3left); det(B3right); det(B3)

loglike3 <- -fit$value # log likelihood

cat("log-likelihood: ", loglike3, "\n")

cat("\n")

D.3.2 R code for the maximum likelihood estimation of the MVMR-

GMF model

The following code is for studies with complete data.

#

# model with gmf - complete data

#

gmf.reml.log.like <- function(beta, logor1, logor2, vlogor1, vlogor2,

covlogor12, d1, d2, vd1, vd2, covd12){
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eta <- beta[1]

trlambda <- beta[2]

delta <- beta[3]

logtausq <- beta[4]

lambda <- (exp(trlambda) - 1)/(exp(trlambda) + 1)

tausq <- exp(logtausq)

loglike <- NULL

BETA <- c(eta*lambda*delta, lambda*delta, eta*delta, delta)

W <- B <- SIGMA <- matrix(nrow=4,ncol=4)

for (i in 1:length(logor1)) {

Y <- c(logor1[i], d1[i], logor2[i], d2[i])

W[1,] <- c(vlogor1[i], 0, covlogor12[i], 0)

W[2,] <- c(0, vd1[i], 0, covd12[i])

W[3,] <- c(covlogor12[i], 0, vlogor2[i], 0)

W[4,] <- c(0, covd12[i], 0, vd2[i])

Bleft <- matrix(c(lambda^2*tausq, lambda*tausq, lambda*tausq, tausq), nrow=2)

Bright <- matrix(c(eta^2, eta, eta, 1), nrow=2)

B <- kronecker(Bleft, Bright)

SIGMA <- W + B

detSIGMA <- det(SIGMA)

if(detSIGMA == 0){break} # check of invertibility

invSIGMA <- solve(SIGMA)

loglike[i] <- -0.5*(log(detSIGMA) + t(Y - BETA)%*%invSIGMA%*%(Y - BETA))

}

-1*sum(loglike)

}

inits <- rep(0,4)

gmfremlopt <- optim(inits, gmf.reml.log.like, hessian=T, control=list(maxit=5000),

logor1=cdata$logor1, logor2=cdata$logor2, vlogor1=cdata$vlogor1,

vlogor2=cdata$vlogor2, covlogor12=cdata$covlogor12,

d1=cdata$scd1, d2=cdata$scd2, vd1=cdata$scvd1, vd2=cdata$scvd2, covd12=cdata$sccovd12)

cat("\n gmf model - complete outcome data \n")

gmfremlopt$convergence

gmfremlopt$hessian

det(gmfremlopt$hessian)

INFO2 <- solve(gmfremlopt$hessian)

SE2 <- diag(chol(INFO2))

CI2 <- gmfremlopt$par + cbind(rep(-1,4), rep(1,4))*qnorm(0.975)*SE2

cat("logORpd: ", gmfremlopt$par[1], "\n")

cat("logORpd: ", CI2[1,], "\n")

cat("ORpd: ", exp(gmfremlopt$par[1]), "\n")

cat("ORpd CI: ", exp(CI2[1,]), "\n")

lambda <- (exp(gmfremlopt$par[2]) - 1)/(exp(gmfremlopt$par[2]) + 1)

cat("lambda: ", lambda, "\n")

lambdaCI2 <- c((exp(CI2[2,1]) - 1)/(exp(CI2[2,1]) + 1), (exp(CI2[2,2]) - 1)/(exp(CI2[2,2]) + 1))

cat("lambda CI: ", lambdaCI2, "\n")

cat("delta: ", gmfremlopt$par[3], "\n")

cat("delta CI: ", CI2[3,], "\n")

tsq <- exp(gmfremlopt$par[4])

cat("tausq: ", tsq, "\n")

cat("tausq CI: ", exp(CI2[4,]), "\n")

B2left <- matrix(c(lambda^2*tsq, lambda*tsq, lambda*tsq, tsq), nrow=2)
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B2right <- matrix(c(remlopt$par[1]^2, remlopt$par[1], remlopt$par[1], 1), nrow=2)

B2 <- kronecker(B2left, B2right)

B2left; B2right; B2

det(B2left); det(B2right); det(B2)

loglike2 <- -gmfremlopt$value # log likelihood

cat("log-likelihood: ", loglike2, "\n")

# REML likelihood ratio test

remllrtp <- pchisq(-2*(loglike2 - loglike1), 2, lower.tail=F)

cat("REML LRT: ", remllrtp, "\n")

The following code is for studies with complete data or missing either gene-disease or
gene-phenotype outcomes.

#

# MVMR-GMF model - complete and incomplete data

#

gmf.reml.log.like.all <- function(beta, logor1, logor2, vlogor1, vlogor2,

covlogor12, d1, d2, vd1, vd2, covd12, type){

eta <- beta[1]

trlambda <- beta[2]

delta <- beta[3]

logtausq <- beta[4]

lambda <- (exp(trlambda) - 1)/(exp(trlambda) + 1)

tausq <- exp(logtausq)

loglike <- NULL

for (i in 1:length(logor1)) {

if(type[i] == 1){

BETA <- c(eta*lambda*delta, lambda*delta, eta*delta, delta)

W <- B <- SIGMA <- matrix(nrow=4, ncol=4)

Y <- c(logor1[i], d1[i], logor2[i], d2[i])

W[1,] <- c(vlogor1[i], 0, covlogor12[i], 0)

W[2,] <- c(0, vd1[i], 0, covd12[i])

W[3,] <- c(covlogor12[i], 0, vlogor2[i], 0)

W[4,] <- c(0, covd12[i], 0, vd2[i])

Bleft <- matrix(c(lambda^2*tausq, lambda*tausq, lambda*tausq, tausq), nrow=2)

Bright <- matrix(c(eta^2, eta, eta, 1), nrow=2)

B <- kronecker(Bleft, Bright)

}

if(type[i] == 2){ # g-d only

BETA <- c(eta*lambda*delta, eta*delta)

W <- B <- SIGMA <- matrix(nrow=2, ncol=2)

Y <- c(logor1[i], logor2[i])

W[1,] <- c(vlogor1[i], covlogor12[i])

W[2,] <- c(covlogor12[i], vlogor2[i])

B[1,] <- c(eta^2*lambda^2*tausq, eta^2*lambda*tausq)

B[2,] <- c(eta^2*lambda*tausq, eta^2*tausq)

}

if(type[i] == 3){ # g-p only

BETA <- c(lambda*delta, delta)

W <- B <- SIGMA <- matrix(nrow=2, ncol=2)

Y <- c(d1[i], d2[i])

W[1,] <- c(vd1[i], covd12[i])

W[2,] <- c(covd12[i], vd2[i])

B[1,] <- c(lambda^2*tausq, lambda*tausq)

B[2,] <- c(lambda*tausq, tausq)
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}

SIGMA <- W + B

detSIGMA <- det(SIGMA)

if(detSIGMA == 0){break} # check of invertibility

invSIGMA <- solve(SIGMA)

loglike[i] <- -0.5*(log(detSIGMA) + t(Y - BETA)%*%invSIGMA%*%(Y - BETA))

}

-1*sum(loglike)

}

inits <- rep(0,4)

gmf <- optim(inits, gmf.reml.log.like.all, hessian=T, control=list(maxit=5000),

logor1=data$logor1, logor2=data$logor2,

vlogor1=data$vlogor1, vlogor2=data$vlogor2, covlogor12=data$covlogor12,

d1=data$scd1, d2=data$scd2,

vd1=data$scvd1, vd2=data$scvd2, covd12=data$sccovd12,

type=data$type)

cat("\n gmf model - complete and incomplete outcome data \n")

gmf$convergence

gmf$hessian

det(gmf$hessian)

INFO4 <- solve(gmf$hessian)

SE4 <- diag(chol(INFO4))

CI4 <- gmf$par + cbind(rep(-1,4), rep(1,4))*qnorm(0.975)*SE4

cat("logORpd: ", gmf$par[1], "\n")

cat("logORpd: ", CI4[1,], "\n")

cat("ORpd: ", exp(gmf$par[1]), "\n")

cat("ORpd CI: ", exp(CI4[1,]), "\n")

lambda <- (exp(gmf$par[2]) - 1)/(exp(gmf$par[2]) + 1)

cat("lambda: ", lambda, "\n")

lambdaCI4 <- c((exp(CI4[2,1]) - 1)/(exp(CI4[2,1]) + 1), (exp(CI4[2,2]) - 1)/(exp(CI4[2,2]) + 1))

cat("lambda CI: ", lambdaCI4, "\n")

cat("delta: ", gmf$par[3], "\n")

cat("delta CI: ", CI4[3,], "\n")

tsq <- exp(gmf$par[4])

cat("tausq: ", tsq, "\n")

cat("tausq CI: ", exp(CI4[4,]), "\n")

B4left <- matrix(c(lambda^2*tsq, lambda*tsq, lambda*tsq, tsq), nrow=2)

B4right <- matrix(c(gmf$par[1]^2, gmf$par[1], gmf$par[1], 1), nrow=2)

B4 <- kronecker(B4left, B4right)

B4left; B4right; B4

det(B4left); det(B4right); det(B4)

loglike4 <- -gmf$value # log likelihood

cat("log-likelihood: ", loglike4, "\n")

# likelihood ratio test

lr.test.reml.p <- pchisq(-2*(loglike4 - loglike3), 2, lower.tail=F)

cat("LRT: ", lr.test.reml.p, "\n")

D.3.3 WinBUGS model statement for the product normal formulation

model{

for(i in 1:10){

theta1[i] <- eta*lambda*delta[i]

logor1[i] ~ dnorm(theta1[i], plogor1[i])
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delta1[i] <- lambda*delta[i]

scd1[i] ~ dnorm(delta1[i], scpd1[i])

theta2[i] <- eta*delta[i]

logor2[i] ~ dnorm(theta2[i], plogor2[i])

delta2[i] <- delta[i]

scd2[i] ~ dnorm(delta2[i], scpd2[i])

delta[i] ~ dnorm(delta3, invtausq)

}

for(i in 11:13){

theta1[i] <- eta*lambda*delta[i]

logor1[i] ~ dnorm(theta1[i], plogor1[i])

theta2[i] <- eta*delta[i]

logor2[i] ~ dnorm(theta2[i], plogor2[i])

delta[i] ~ dnorm(delta3, invtausq)

}

for(i in 14:18){

delta1[i] <- lambda*delta[i]

scd1[i] ~ dnorm(delta1[i], scpd1[i])

delta2[i] <- delta[i]

scd2[i] ~ dnorm(delta2[i], scpd2[i])

delta[i] ~ dnorm(delta3, invtausq)

}

# priors

delta3 ~ dnorm(0, 1.0E-6)

invtausq ~ dgamma(0.001, 0.001)

tausq <- 1/invtausq

eta ~ dnorm(0, 1.0E-6)

lambda ~ dbeta(1, 1)

or <- exp(eta)

}

D.3.4 Stata code for a multi-column forest plot

To draw a four column forest plot in Stata the plot region needs to split into five columns,

one for the study labels and the other four for each forest plot for The use of the graph

twoway forced size option fxsize(#) (although the number in the brackets has to be

guessed) is useful in setting the aspect ratio for each of the plots which are then com-

bined into a single plot using graph combine at the end. Note the fxsize() option is

documented at the bottom of the graph combine help-file.

* plot for the y-axis

twoway rcap or1low or1upp studynumericorder, horizontal lc(none) || ///

, legend(off) ylab(1(1)19, noticks value ang(h) labsize(small)) ///

ytitle("") ///

xtitle(" ", justification(left)) ///

xscale(off fill) xlab(.25, labsize(vsmall)) ///
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yscale(rev noline) ///

fxsize(15) ///

subtitle(" ") ///

plotr(ls(none))

graph save ./Plots/yaxis.gph,replace

* plot for the gg vs Gg gene-disease outcome

twoway rspike or1low or1upp studynumericorder, horizontal lc(gs0) || ///

scatter studynumericorder or1 if studynumericorder!=19 [aw=or1prec], msize(vsmall) mc(gs0) m(s) || ///

scatter studynumericorder or1 if studynumericorder==19, xline(1) msize(small) mc(gs0) m(d) || ///

, legend(off) ylab(1(1)19,noticks nolabels) ytitle("") ///

yscale(rev noline) plotr(ls(none)) ///

xscale(log range(.25 30)) xlab(.25 1 4 16, labsize(small)) ///

xtitle(OR, size(small)) ///

subtitle("Fracture risk: Gg vs gg") ///

fxsize(30)

graph save ./Plots/gdma1.gph,replace

* plot for the gg vs GG gene-disease outcome

twoway rspike or2lowres or2uppres studynumericorder, horizontal lc(gs0) || ///

scatter studynumericorder or2 if studynumericorder!=19 [aw=or2prec], msize(vsmall) mc(gs0) m(s) || ///

scatter studynumericorder or2 if studynumericorder==19, xline(1) msize(small) mc(gs0) m(d) || ///

, ylab(1(1)19, nolabels noticks) legend(off) ///

fxsize(30) ytitle("") yscale(rev noline) ///

xscale(log range(.25 30)) xlab(.25 1 4 16, labsize(small)) ///

xtitle(OR,size(small)) ///

subtitle("Fracture risk: GG vs gg") plotr(ls(none))

graph save ./Plots/gdma2.gph,replace

* plot for the gg vs Gg gene-phenotype outcome

twoway rspike d1low d1upp studynumericorder, horizontal lc(gs0) || ///

scatter studynumericorder d1 if studynumericorder!=19 [aw=d1prec], msize(vsmall) mc(gs0) m(s) || ///

scatter studynumericorder d1 if studynumericorder==19, xline(0) msize(small) mc(gs0) m(d) || ///

, legend(off) ytitle("") ///

yscale(rev noline) ylab(1(1)19, nolabels noticks) ///

plotr(ls(none)) ///

xtitle(BMD, size(small)) ///

xscale(range(-.2 .2)) xlab(, labsize(small)) ///

subtitle("BMD: Gg vs gg") ///

fxsize(30)

graph save ./Plots/gpma1.gph,replace

* plot for the GG vs gg gene-phenotype outcome

twoway rspike d2lowres d2uppres studynumericorder, horizontal lc(gs0) || ///

scatter studynumericorder d2 if studynumericorder!=19 [aw=d2prec], msize(vsmall) mc(gs0) m(s) || ///

scatter studynumericorder d2 if studynumericorder==19, xline(0) msize(small) mc(gs0) m(d) || ///

, legend(off) ytitle("") ///

yscale(rev noline) ylab(1(1)19, noticks nolabels) ///

plotr(ls(none)) ///

xtitle(BMD,size(small)) ///

xlab(,labsize(small)) ///

xscale(range(-.2 .2)) ///

subtitle("BMD: GG vs gg") ///

fxsize(30)

graph save ./Plots/gpma2.gph,replace

* combine the 5 plots

graph combine "./Plots/yaxis.gph" "./Plots/gdma1.gph" ///

"./Plots/gpma1.gph" "./Plots/gdma2.gph" "./Plots/gpma2.gph" ///

, cols(5) imargin(vsmall)
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D.3.5 R code for a multi-column forest plot

In R the plotting region can be divided into the 5 required columns by setting par(mfrow=c(1,5))

before the plots are drawn.

library(plotrix) # for plotCI() function

load("mann.Rdata")

id <- 1:dim(data)[1]

sdata <- data[c(15,18,17,14,16,12,13,11,7,10,1,8,2,4,5,3,6,9),] # order studies

# plot

par(mfrow=c(1,5), mar=c(5,0,3,0.25), lend="square", font.main=1)

plot(id , yaxt="n", xaxt="n", xlab="", ylab="", bty="n", col=NA)

axis(side=2, labels=sdata$study, at=id, tick=F, las=1, line=-10)

plotCI(x=sdata$logor1, y=id,

li=sdata$logor1low, ui=sdata$logor1upp, err="x",

xlim=c(-2,3.5), bty="n", yaxt="n",

xlab="G-D log odds ratio",

ylab="",

main="Gg versus gg",

cex=1.1, pch=15)

abline(v=0)

plotCI(x=sdata$scd1, y=id,

li=sdata$scd1low, ui=sdata$scd1upp, err="x",

xlim=c(-4,4), bty="n", yaxt="n",

xlab="G-P mean difference",

ylab="",

main="Gg versus gg",

cex=1.1, pch=15)

abline(v=0)

plotCI(x=sdata$logor2, y=id,

li=sdata$logor2low, ui=sdata$logor2upp, err="x",

xlim=c(-2,3.5), bty="n", yaxt="n",

xlab="G-D log odds ratio",

ylab="",

main="GG versus gg",

cex=1.1, pch=15)

abline(v=0)

plotCI(x=sdata$scd2, y=id,

li=sdata$scd2low, ui=sdata$scd2upp, err="x",

xlim=c(-4,4), bty="n", yaxt="n",

xlab="G-P mean difference",

ylab="",

main="GG versus gg",

cex=1.1, pch=15)

abline(v=0)

177



Appendix D. R and Stata code

D.4 R code for the simulations in Chapter 6

D.4.1 Single cohort simulations

# function for taylor series and fieller’s method - ignoring correlation terms

tys <- function(my,vy,mx,vx){

n <- max(length(my), length(vy), length(mx), length(vx))

m <- (my/mx) + (vx*my)/(mx^3)

v <- (vx*my^2)/(mx^4) + vy/(mx^2)

ci <- m + cbind(rep(-1,n),rep(1,n))*qnorm(0.975)*sqrt(v)

a <- 1 - qnorm(0.975)^2*(vx/mx^2)

b <- (vy/my^2) + (vx/mx^2) - qnorm(0.975)*(vy/my^2)*(vx/mx^2)

fci <- ((my/mx)/a)*(1 + cbind(rep(-1,n),rep(1,n))*qnorm(0.975)*sqrt(b))

return(list(m=m,v=v,ci=ci,fci=fci))

}

# cohort study function

chstudy <- function(N,alpha0,alpha1,alpha2,psd,beta0,beta1,beta2,usd,q){

NSIM <- N

genotype1 <- rbinom(n=NSIM, size=1, prob=q)

genotype2 <- rbinom(n=NSIM, size=1, prob=q)

genotype <- genotype1 + genotype2

confounder <- runif(NSIM, 0, usd)

phenotype <- rnorm(NSIM, alpha0 + alpha1*genotype + alpha2*confounder, psd)

lp <- beta0 + beta1*phenotype + beta2*confounder

pd <- exp(lp)/(1 + exp(lp))

d <- as.numeric(runif(NSIM) < pd)

ch <- data.frame(genotype=genotype, phenotype=phenotype, lp=lp, pd=pd, d=d, confounder=confounder)

tab <- table(ch$d, ch$genotype)

a <- tab[1,1]

b <- tab[1,2]

c <- tab[1,3]

d <- tab[2,1]

e <- tab[2,2]

f <- tab[2,3]

OR2 <- (e/b)/(d/a)

logOR2 <- log(OR2)

se2 <- sqrt(sum(1/tab[1:2,1:2]))

OR3 <- (f/c)/(d/a)

logOR3 <- log(OR3)

se3 <- sqrt(sum(1/tab[,-2]))

m0 <- mean(ch$phenotype[ch$genotype == 0 & ch$d == 0])

m1 <- mean(ch$phenotype[ch$genotype == 1 & ch$d == 0])

m2 <- mean(ch$phenotype[ch$genotype == 2 & ch$d == 0])

sd0 <- sd(ch$phenotype[ch$genotype == 0 & ch$d == 0])

sd1 <- sd(ch$phenotype[ch$genotype == 1 & ch$d == 0])

sd2 <- sd(ch$phenotype[ch$genotype == 2 & ch$d == 0])

d2 <- m1 - m0

d3 <- m2 - m0

sed2 <- sqrt(sd0^2 + sd1^2)

sed3 <- sqrt(sd0^2 + sd2^2)

cov23 <- sum(1/tab[,1])

covd23 <- sd0^2

# calculations for difference between marginal and cond OR

pd0 <- ch$pd[ch$genotype == 0]

pd1 <- ch$pd[ch$genotype == 1]

pd2 <- ch$pd[ch$genotype == 2]

mpd0 <- mean(pd0)

mpd1 <- mean(pd1)

mpd2 <- mean(pd2)

ml0 <- mean(log(pd0/(1 - pd0)))
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ml1 <- mean(log(pd1/(1 - pd1)))

ml2 <- mean(log(pd2/(1 - pd2)))

lm0 <- log(mpd0/(1 - mpd0))

lm1 <- log(mpd1/(1 - mpd1))

lm2 <- log(mpd2/(1 - mpd2))

lg2c <- ml1 - ml0

lg3c <- 0.5*(ml2 - ml0)

lg2m <- lm1 - lm0

lg3m <- 0.5*(lm2 - lm0)

lr <- coef(glm(ch$d ~ ch$phenotype, family="binomial"))

st <- lm(ch$phenotype ~ ch$genotype)

ad <- coef(glm(ch$d ~ ch$phenotype + st$residuals, family="binomial"))

eta2 <- logOR2/d2

eta3 <- logOR3/d3

err2 <- (eta2 - beta1)^2

err3 <- (eta3 - beta1)^2

out <- c(m0,m1,m2,d2,d3,

sd0,sd1,sd2,sed2,sed3,

logOR2,se2,

logOR3,se3,

eta2,eta3,

lg2c,lg3c,lg2m,lg3m,

a,b,c,d,e,f,

lr,ad,cov23,covd23,err2,err3)

names(out) <- c("mu0","mu1","mu2","d2","d3",

"sd0","sd1","sd2","sed2","sed3",

"theta2","setheta2",

"theta3","setheta3",

"eta2","eta3",

"lg2c","lg3c","lg2m","lg3m",

"a","b","c","d","e","f",

"b0","b1","ab0","ab1","ab2",

"cov23","covd23","err2","err3")

return(out)

}

# 1 - cohort size 3000

set.seed(12345)

its <- 10000

sims <- replicate(its,

chstudy(N=3000, alpha0=0, alpha1=1, alpha2=0, psd=1,

beta0=log(0.05/0.95), beta1=log(1.25), beta2=0, usd=1, q=0.3),

simplify=F)

res <- matrix(unlist(sims), nrow=length(sims), byrow=T)

colnames(res) <- names(sims[[1]])

mns <- colMeans(res, na.rm=TRUE)

print(mns, 4)

sds <- apply(res, 2, sd, na.rm=TRUE)

n <- length(mns)

cis <- mns + cbind(rep(-1,n),rep(1,n))*qnorm(.975)*sds/sqrt(its)

rownames(cis) <- names(mns)

print(cis, 4)

mns[c("eta2","eta3")] - log(1.25)

cis[c("eta2","eta3"),] - log(1.25)

save(res,mns,sds,cis,file="ch3000_rev.Rdata")

tys(mns["theta2"], sds["theta2"]^2/its, mns["d2"], sds["d2"]^2/its)

tys(mns["theta3"], sds["theta3"]^2/its, mns["d3"], sds["d3"]^2/its)

# 2 - cohort size 3e3 with confounder effect

set.seed(12345)
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its <- 10000

sims <- replicate(its,

chstudy(N=3000, alpha0=0, alpha1=1, alpha2=1, psd=1,

beta0=log(0.05/0.95), beta1=log(1.25), beta2=1, usd=1, q=0.3),

simplify=F)

res <- matrix(unlist(sims), nrow=length(sims), byrow=T)

colnames(res) <- names(sims[[1]])

mns <- colMeans(res)

print(mns,4)

sds <- apply(res, 2, sd)

n <- length(mns)

cis <- mns + cbind(rep(-1,n),rep(1,n))*qnorm(.975)*sds/sqrt(its)

rownames(cis) <- names(mns)

print(cis,4)

mns[c("eta2","eta3")] - log(1.25)

cis[c("eta2","eta3"),] - log(1.25)

save(res,mns,sds,cis,file="ch3000conf_rev.Rdata")

tys(mns["theta2"], sds["theta2"]^2/its, mns["d2"], sds["d2"]^2/its)

tys(mns["theta3"], sds["theta3"]^2/its, mns["d3"], sds["d3"]^2/its)

# 3 - cohort size 3000 - no confounder - smaller psd

set.seed(12345)

its <- 10000

sims <- replicate(its,

chstudy(N=3000, alpha0=0, alpha1=1, alpha2=0, psd=0.1,

beta0=log(0.05/0.95), beta1=log(1.25), beta2=0, usd=1, q=0.3),

simplify=F)

res <- matrix(unlist(sims), nrow=length(sims), byrow=T)

colnames(res) <- names(sims[[1]])

mns <- colMeans(res)

print(mns,4)

sds <- apply(res, 2, sd)

n <- length(mns)

cis <- mns + cbind(rep(-1,n),rep(1,n))*qnorm(.975)*sds/sqrt(its)

rownames(cis) <- names(mns)

print(cis,4)

mns[c("eta2","eta3")] - log(1.25)

cis[c("eta2","eta3"),] - log(1.25)

save(res,mns,sds,cis,file="ch3000sm_rev.Rdata")

tys(mns["theta2"], sds["theta2"]^2/its, mns["d2"], sds["d2"]^2/its)

tys(mns["theta3"], sds["theta3"]^2/its, mns["d3"], sds["d3"]^2/its)

# 4 - cohort size 3e3 with confounder effect - smaller psd

set.seed(12345)

its <- 10000

sims <- replicate(its,

chstudy(N=3000, alpha0=0, alpha1=1, alpha2=1, psd=0.1,

beta0=log(0.05/0.95), beta1=log(1.25), beta2=1, usd=1, q=0.3),

simplify=F)

res <- matrix(unlist(sims), nrow=length(sims), byrow=T)

colnames(res) <- names(sims[[1]])

mns <- colMeans(res)

print(mns,4)

sds <- apply(res, 2, sd)

n <- length(mns)

cis <- mns + cbind(rep(-1,n),rep(1,n))*qnorm(.975)*sds/sqrt(its)

rownames(cis) <- names(mns)

print(cis,4)

mns[c("eta2","eta3")] - log(1.25)

cis[c("eta2","eta3"),] - log(1.25)

save(res,mns,sds,cis,file="ch3000confsm_rev.Rdata")

tys(mns["theta2"], sds["theta2"]^2/its, mns["d2"], sds["d2"]^2/its)

tys(mns["theta3"], sds["theta3"]^2/its, mns["d3"], sds["d3"]^2/its)
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D.4.2 Meta-analysis simulations

library(Matrix)

# loglikelihood for mvmr model

mvmrLoglike <- function(beta,logor1,logor2,vlogor1,vlogor2,covlogor12,d1,d2,vd1,vd2,covd12){

eta <- beta[1]

mu1 <- beta[2]

mu2 <- beta[3]

logtau1sq <- beta[4]

logtau2sq <- beta[5]

transrho <- beta[6]

tau1 <- sqrt(exp(logtau1sq))

tau2 <- sqrt(exp(logtau2sq))

rho <- (exp(transrho) - 1)/(exp(transrho) + 1)

loglike <- NULL

BETA <- c(eta*mu1, mu1, eta*mu2, mu2)

W <- B <- SIGMA <- matrix(nrow=4,ncol=4)

for (i in 1:length(logor1)) {

Y <- c(logor1[i], d1[i], logor2[i], d2[i])

W[1,] <- c(vlogor1[i], 0, covlogor12[i], 0)

W[2,] <- c(0, vd1[i], 0, covd12[i])

W[3,] <- c(covlogor12[i], 0, vlogor2[i], 0)

W[4,] <- c(0, covd12[i], 0, vd2[i])

Bleft <- matrix(c(tau1^2, rho*tau1*tau2, rho*tau1*tau2, tau2^2), nrow=2)

Bright <- matrix(c(eta^2, eta, eta, 1), nrow=2)

B <- kronecker(Bleft, Bright)

SIGMA <- W + B

invSIGMA <- try(solve(SIGMA))

x <- 1

if(class(invSIGMA) == "try-error"){

next

}

loglike[i] <- -0.5*(log(det(SIGMA)) + t(Y - BETA)%*%invSIGMA%*%(Y - BETA))

}

-1*sum(loglike)

}

tsrc <- function(my,vy,mx,vx,rhoxy,b1){

m <- my/mx + (vx*my)/(mx^3) - (rhoxy*sqrt(vx)*sqrt(vy))/(mx^2)

v <- (vx*my^2)/(mx^4) + vy/(mx^2) - (2*rhoxy*sqrt(vx)*sqrt(vy)*my)/(mx^3)

ci <- m + c(-1,1)*qnorm(0.975)*sqrt(v)

bias <- m - b1

return(list(m=m,v=v,ci=ci,bias=bias))

}

# scenario 1

set.seed(12345)

its <- 100

sims <- matrix(nrow=its, ncol=13)

colnames(sims) <- c("eta","mu2","mu3","logtau2sq","logtau3sq","transrho",

"conv","bias","mse","rc2","rc2bias","rc3","rc3bias")

for(i in 1:its){

ma <- replicate(10, chstudy(3e3,0,1,0,1,log(0.05/0.95),log(1.25),0,1,0.3), simplify=FALSE)

meta <- matrix(unlist(ma), nrow=length(ma), byrow=T)

colnames(meta) <- names(ma[[1]])

sum(is.infinite(meta[,"theta3"]))

meta <- meta[is.finite(meta[,"theta3"]),]

inits <- rep(0,6)

fit <- try(optim(inits, fn=mvmrLoglike, hessian=T, method="BFGS",

logor1=meta[,"theta2"], logor2=meta[,"theta3"],

vlogor1=meta[,"setheta2"]^2, vlogor2=meta[,"setheta3"]^2,

covlogor12=meta[,"cov23"],

d1=meta[,"d2"], d2=meta[,"d3"],

vd1=meta[,"sed2"]^2, vd2=meta[,"sed3"]^2, covd12=meta[,"covd23"]))

bias <- fit$par[1] - log(1.25)
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Appendix D. R and Stata code

mse <- (fit$par[1] - log(1.25))^2

rc2 <- tsrc(mean(meta[,"theta2"]), var(meta[,"theta2"]),

mean(meta[,"d2"]), var(meta[,"d2"]),

cor(meta[,"theta2"],meta[,"d2"]), log(1.25))

rc3 <- tsrc(mean(meta[,"theta3"]), var(meta[,"theta3"]),

mean(meta[,"d3"]), var(meta[,"d3"]),

cor(meta[,"theta3"],meta[,"d3"]), log(1.25))

sims[i,] <- c(fit$par,fit$convergence,bias,mse,rc2$m,rc2$bias,rc3$m,rc3$bias)

print(i)

}

sims <- sims[sims[,"conv"] == 0,]

avs <- colMeans(sims, na.rm=TRUE)

avs

sds <- apply(sims, 2, sd)

n <- length(avs)

cis <- avs + cbind(rep(-1,n),rep(1,n))*qnorm(.975)*sds/sqrt(its)

cis
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Addenda

From the list of publications, on page vii, papers 4 and 6 are included on the following

pages. Paper 4 relates to the work about the adjusted instrumental variable estimator

in Chapters 3 and 4 and Appendices B and C. Paper 6 relates to the work on the meta-

analysis of Mendelian randomization studies in Chapter 5.
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Background Mendelian randomization uses a carefully selected gene as an
instrumental-variable (IV) to test or estimate an association
between a phenotype and a disease. Classical IV analysis assumes
linear relationships between the variables, but disease status is
often binary and modelled by a logistic regression. When the
linearity assumption between the variables does not hold the IV
estimates will be biased. The extent of this bias in the phenotype-
disease log odds ratio of a Mendelian randomization study is
investigated.

Methods Three estimators termed direct, standard IV and adjusted IV, of the
phenotype-disease log odds ratio are compared through a simula-
tion study which incorporates unmeasured confounding. The
simulations are verified using formulae relating marginal and
conditional estimates given in the Appendix.

Results The simulations show that the direct estimator is biased by unmea-
sured confounding factors and the standard IV estimator is atten-
uated towards the null. Under most circumstances the adjusted IV
estimator has the smallest bias, although it has inflated type I error
when the unmeasured confounders have a large effect.

Conclusions In a Mendelian randomization study with a binary disease outcome
the bias associated with estimating the phenotype-disease log odds
ratio may be of practical importance and so estimates should be
subject to a sensitivity analysis against different amounts of hypo-
thesized confounding.

Keywords Instrumental-variable analysis, Mendelian randomization, bias,
unobserved confounding

Introduction
In traditional epidemiological studies the associations
between biological phenotypes and diseases can be
distorted by confounding or reverse causation. The aim

of Mendelian randomization analysis is to test or
estimate the association between a biological pheno-
type and a disease in the presence of unmeasured
confounding.1–3 This is achieved using a carefully
selected gene as an instrumental-variable (IV).4–7

When certain assumptions hold Mendelian randomiza-
tion will remove the distorting effects and produce
unconfounded estimates of the association between
a phenotype and a disease.3,8 Genes that influence the
disease through their effect on the biological phenotype
of interest can be used as instrumental-variables in
the analysis because a subject’s genotype is essentially
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randomly assigned before birth and thus should not
be influenced by the many environmental and life-
style factors that typically act as confounders in
epidemiology.9

In this article, we show that, for binary outcomes, the
observed bias towards the null in Mendelian randomi-
zation estimates is due to the impact of random effects
that are not explicitly included in the linear predictor.
This is analogous to the discrepancy between marginal
and conditional parameter estimates in generalized
linear mixed models with a logistic link.10,11 Theoretical
formulae for approximating this difference are provided
for each of three different estimators and their accuracy
is verified by simulation. In theory, knowledge of the
difference between marginal and conditional estimates
could provide a correction for the bias that pertains
in Mendelian randomization analyses. However, the
extent of this bias depends on the properties of the
unmeasured confounders, which are always unknown.
An adjusted instrumental-variable estimator is applied
to Mendelian randomization analyses to produce an
improved estimate of the phenotype-disease associa-
tion. The adjusted IV estimator partially compensates
for the unknown confounders by exploiting informa-
tion from the residuals of the regression of the
intermediate phenotype on the genotype.

Methods
Estimators for Mendelian randomization
studies with binary responses

The key variables in describing the Mendelian ran-
domization model are; the disease status (Y), inter-
mediate phenotype (X), genotype (G) and confounder
(U). The assumed relationship between these vari-
ables is shown in Figure 1. For the ith subject in
a cohort, let yi represent their binary disease status,
pi represent their probability of having the disease,
xi represent the level of the biological phenotype and
gi represent their genotype, which is coded 0, 1 and 2
to indicate the number of copies of the relevant risk
allele. Typically there will be many unmeasured
confounders, so it is assumed that they can be repre-
sented by a single variable, ui, that captures their
combined effect. This confounding variable is

arbitrarily assumed to be standardized to have a
mean of zero and a standard deviation of one. For
simplicity, we assume an additive effect of genotype
on the intermediate phenotype, although the argu-
ment would apply equally to any known mode of
inheritance. It is also assumed that the confounder
acts additively in the linear predictors of the associa-
tions between the genotype and phenotype and
between the phenotype and the disease.
The coefficients in the regression of phenotype on

genotype are denoted by �’s so that,

xi ¼ �0 þ �1gi þ �2ui þ �i, with �i � Nð0, �2
� Þ, ð1Þ

and � represents the effects of measurement error and
unmeasured factors that are not confounders because
they do not influence disease. The coefficients in the
linear predictor between phenotype and disease are
denoted by �’s, so that the disease status follows
a Bernoulli distribution,

yi � BernðpiÞ, with log
pi

1� pi
¼ �0 þ �1xi þ �2ui: ð2Þ

Implicit in the notation is the idea that �i and ui are
independent of one another. The primary interest in
this paper is to recover �1.
If both regressions were linear, ignoring the con-

founder in the instrumental-variable analysis would not
bias the estimate of �1, but this is not the case for a non-
linear relationship between phenotype and disease.12

Substituting the formula for xi in Equation (1) into the
logistic regression in Equation (2) gives,

log
pi

1� pi
¼ �0 þ �1ð�0 þ �1gi þ �2ui þ �iÞ þ �2ui: ð3Þ

The coefficient of gi in this relationship is �1�1 while
the coefficient of gi in the linear regression in
Equation (1) is �1. In principle the ratio of the
estimates of these coefficients should give an estimate
of �1,

4 which is the effect of the phenotype on disease
risk after adjusting for confounding. Unfortunately ui
and �i are unknown, so the estimate of �1�1 is taken
from the logistic regression without those terms, thus
in effect replacing the true conditional model with a
marginal model which averages over the unknown
terms, ui and �i.
An alternative to the ratio estimate of �1 is obtained

by taking the predicted values of the intermediate
phenotype from the first regression ignoring the
confounding,

x̂i ¼ �̂0 þ �̂1gi � �0 þ �1gi ð4Þ

and substituting those into the logistic regression in
Equation (2), in which case,

log
pi

1� pi
� �0 þ �1ðx̂i þ �2ui þ �iÞ þ �2ui: ð5Þ

In this two-stage approach, the estimate of interest
is just the coefficient of the predicted phenotype x̂i,

Figure 1 The relationship between the variables (�i is the
linear predictor of the logistic regression)
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but the biases will be similar to those that occur for
the ratio estimator.
In an attempt to correct for this difference between

marginal and conditional parameter estimates,
and thus improve upon the standard instrumental-
variable estimator an adjusted IV estimator is applied.
The estimated residuals from the first stage linear
regression in Equation (1) are,

ri ¼ xi � x̂i: ð6Þ

These estimated residuals capture some of the
variability contained in the unknown confounders
and the phenotype error term, �. This information can
be used in the second regression by fitting,

log
pi

1� pi
¼ �0 þ �1x̂i þ �rri: ð7Þ

The information about the confounding contained in
the residuals should, in part, compensate for the
missing terms in the marginal form of the logistic
regression model and therefore reduce the difference
between the conditional and marginal estimates of �1.
This article considers three estimators of �1. First,

the direct estimator, that does not use Mendelian
randomization but performs a logistic regression of
disease status on the intermediate as in a traditional
epidemiological study. The direct estimator of �1 is
derived from the linear predictor,

log
pi

1� pi
¼ �0 þ �1xi: ð8Þ

The standard IV estimator uses Mendelian randomi-
zation so that the linear predictor is,

log
pi

1� pi
¼ �0 þ �1x̂i: ð9Þ

The third estimator is the adjusted IV estimator
obtained from Equation (7). In the Appendix,
formulae are given for calculating the size of the
bias in �1 under the three estimators.

Data simulation

A simulation study was performed to validate the
formulae for the three estimators. In a cohort of size
10 000, subjects were each randomly assigned two
alleles in Hardy-Weinberg equilibrium with the allele
frequency of the risk allele set to 30%. The confound-
ing variable was simulated to be normally distributed
with mean zero and variance equal to one, ui�N(0,1).
The phenotype, xi, was generated as a Normal random
variable with mean equal to, �0þ �1giþ �2ui following
Equation (1), and the standard deviation of the
phenotype error term, ��, was set to one. Each
subject’s probability of disease was simulated, follow-
ing Equation (2) such that log pi/(1� pi)¼ �0þ
�1yiþ �2ui.
The baseline prevalence of disease was set to 5% by

fixing �0. Different amounts of confounding were

considered by changing the values of �2 and �2.
In particular, four confounding scenarios were con-
sidered by setting the confounding effect on the
phenotype, �2, to 0, 1, 2 and 3 whilst the confounding
effect on the disease, �2, was varied between zero and
three for each scenario. The other parameters were
fixed as follows; �0¼ 0, �1¼ 1 and �1¼ 1. For each set
of parameter values 10 000 simulations were per-
formed. Statistical analysis was performed using
R (version 2.6.1).13

Results
The three estimators are assessed using the median
parameter estimates, coverage probabilities and type I
errors of the phenotype-disease log odds ratio, �1. The
coverage probability of �1 was calculated as the pro-
portion of simulations whose confidence interval
included the true value of �1. A set of simulations
was performed with �1 equal to 0 to represent the
situation in which there is no association between
phenotype and disease. For those simulations, the
proportion of statistically significant estimates of �1 is
an estimate of the type I error of the Wald test of �1.

Assessment of the bias of the estimators

Figure 2 shows the median of �1 for the three esti-
mators from the simulations, represented by the
symbols, and the values of the estimators calculated
from the formulae given in the Appendix represented
by the lines.
Figure 2 shows that the median values from the

simulations are in close agreement with the theore-
tical predictions, there is the same pattern to the
estimates of �1 for the different values of �2 except
when �2 is equal to zero. When �2 is equal to zero the
direct and adjusted estimators are equivalent due to
the assumptions underlying the relationship between
the confounder and the phenotype. When �2 is non-
zero, allowing the confounder to take effect, the direct
estimate of �1 is greater than the set value of one.
However, the effect the unmeasured confounding has
on the standard IV estimates is to bias them towards
zero, producing estimates that are always below
the true value of one. The values of the adjusted IV
estimator are between the other two sets of estimates
and have the smallest bias of the three estimators. For
the adjusted IV estimates the bias in �1 reduces with
largest values of �2 because the estimated residuals
are more informative.

Assessment of the coverage probabilities
of the estimators

Figure 3 shows the coverage probabilities of the
three estimators, when the nominal level was 95%.
The direct estimator and the standard IV estimator
demonstrate very low coverage for all four scenarios
due to the bias in �1. The adjusted IV estimator
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demonstrates the best coverage properties with levels
around 95% over the range of values of �2 for which
its estimate of �1 was approximately equal to the set
value of one in Figure 2.

Assessment of type I error

Figure 4 shows the type I error of the standard IV and
adjusted IV estimators when the nominal rate is 5%.
The type I error of the direct estimator is not shown
on Figure 4 because the values were very large. Under
the three scenarios with non-zero values of �2 the
adjusted IV estimator has a substantially higher type I
error rate than the standard IV estimator because the
inclusion of the estimated residuals in the adjusted IV
estimator reduced its estimated standard error.

Discussion
This article considers the bias in the estimates from
Mendelian randomization studies with binary out-
comes. Three estimators of the phenotype-disease log

odds ratio, termed; direct, standard IV and adjusted
IV, have been evaluated through a simulation study.
The simulations are in agreement with formulae
relating conditional and marginal parameter estimates
from logistic regression given in the Appendix. The
adjusted IV estimator was the least biased, but it had
high type I error when the effect of the unmeasured
confounder was large. Further, unreported simula-
tions show that the difference between marginal and
conditional parameter estimates would also exist with
probit regression and hence a similar but not identical
adjustment between the conditional and marginal
estimates of �1 would be required if probit regressions
were used in place of logistic regressions for the three
estimators.10

The simulations investigated the performance of the
estimators over a range of values of the confounder.
Over the four panels in Figure 2, when �2¼ 0, 1, 2
and 3, the confounder accounted for approximately
0%, 45%, 80% and 90% of the phenotype variance. For
the log odds of disease the confounder accounted for
between 0% and 90% of the variance in the linear
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predictor when �2¼ 0 and �2 varied from 0 to 3,
between 45% and 90% when �2¼ 1, between 80% and
90% when �2¼ 2 and between 85% and 95% when
�2¼ 3. Typically the gene used in a Mendelian ran-
domization study will only explain a small percentage
of the variance in the phenotype, perhaps <10%. The
impact of the confounders can therefore be large
causing large bias. If it is possible to include
measured confounders in the analysis this will
reduce the importance of the unmeasured confoun-
ders and so reduce the bias in all of the estimators.
The adjusted IV estimator uses the estimated resid-

uals as well as the predicted values from the first
stage regression of the genotype on the phenotype
as covariates in the second stage logistic regression
between the phenotype and the disease outcome.
A similar adjusted IV estimator was introduced in the
context of clinical trials subject to non-compliance.14

The first stage residuals contain some information
about the unmeasured confounder since they capture
the variance in the phenotype that is not explained by

the genotype. The argument used in the clinical trials
context was that these first stage residuals meet
Pearl’s back-door criterion and their inclusion in the
model results in the adjusted IV estimate having a
causal interpretation.14

Point estimates of causal effects from instrumental
variable analyses require strong parametric and
distributional assumptions, e.g. all relationships are
linear without interactions.6,15 Although the relation-
ship between a gene and an intermediate phenotype
might well be approximated by a linear regression,
the final response variable in epidemiological studies
is often a binary indicator of disease status and so the
phenotype-disease relationship is typically non-linear.
Instrumental variable theory has not been fully gener-
alized to non-linear situations6 so the practical impli-
cations of such a violation of the core assumptions
have not yet been clearly defined. Most crucially,
both the specification of the relevant causal parameter
and identification of how it relates to what can
be estimated in the observational regime are not
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generally straightforward.12 There are many examples
where causal estimates have been obtained for binary
outcomes but the particular parameter that can be
estimated depends on the situation being considered
and the assumptions that can be made.16–22 Whilst,
this is an important issue, our focus here is simply on
improving the estimates of the parameter for the
effect of phenotype on disease in the relevant logistic
regression equation when contemporary Mendelian
randomization methods are applied to binary outcome
data. For now, we ignore the issue of whether, and
under what conditions, this parameter has a strictly
causal interpretation.
The bias associated with binary outcomes in a

Mendelian randomization study may be of practical
importance, so more detailed sensitivity analyses
should be performed in which the biasing effects of
hypothesized amounts of confounding are investi-
gated using the formulae given in the Appendix.
The three estimators considered here give different

values of the phenotype-disease log odds ratio under
different scenarios of confounding. The differences
between the estimates are greater when the effects
of the unmeasured confounders are larger. There are
now several published examples of Mendelian ran-
domization analyses, and the collection of genotype,
phenotype and disease status information is becoming
increasingly common, especially with the creation of
large-scale Biobanks such as the UK Biobank. Large-
scale collaborative genetic epidemiological studies23,24

will ensure that there will be many genes available for
use as instrumental variables in future Mendelian
randomization analyses.
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Appendix
Formulae for the difference between
the marginal and conditional parameter
estimates of the three estimators

The difference between marginal and conditional
parameter estimates has been investigated for the
case of linear, logistic, probit and Poisson regression
models.10,25 In the case of logistic regression this
difference can be expressed by a multiplicative factor,

�marg � �cond �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2V
p , where c ¼ 16

ffiffiffi

3
p

15�
: ð10Þ

where �marg and �cond are the marginal and conditional
parameter estimates and V is the variance of the
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covariates over which the marginal estimates are
averaged. The formulae for the three estimators
are derived by approximating the logistic regression
as a simple regression of the log odds ratio,
�¼ log(p/(1� p)) on the covariates and confounders.26

If the terms included in the linear predictor of
the logistic regression are denoted by Z then the
remaining variance after allowing for these terms will
be given by,

V ¼ varð�jZÞ ¼ varð�Þ � covð�, ZÞ2

varðZÞ ð11Þ

since � and Z can both be assumed to be normally
distributed.27 From Equation (3),

�i ¼ �0 þ �1�0 þ �1�1gi þ ð�1�2 þ �2Þui þ �1�i ð12Þ

and because u is standardized, it follows that

varð�Þ ¼ ð�1�1Þ2varðgÞ þ ð�1�2 þ �2Þ2 þ �2
1�

2
� ð13Þ

and we can approximate var(g) by 2q(1� q) where
q is the minor allele frequency. Hence to apply
Equation (10) it is necessary to derive V for each of
the three estimators.

The direct estimator

The direct estimator performs a logistic regression of
disease on the intermediate phenotype. In this case
Z¼ xi where,

xi ¼ �0 þ �1gi þ �2ui þ �i ð14Þ

so,

varðZÞ ¼ �2
1varðgÞ þ �2

2 þ �2
� : ð15Þ

The covariance between the log odds and the terms in
the linear predictor is given by

covð�,ZÞ ¼ �1 �2 1
� �

�
varðgÞ 0 0

0 1 0

0 0 �2
�

2

6

4

3

7

5
�

�1�1

�1�2 þ �2

�1

2

6

4

3

7

5

¼ �2
1�1varðgÞ þ �2ð�1�2 þ �2Þ þ �1�

2
� : ð16Þ

Hence Vdirect can be formed using Equations (13),
(16) and (15).

The standard IV estimator

For the standard IV estimator the log odds are
regressed on the fitted values from the linear
regression of the phenotype on the genotype. Thus
Z� �0þ �1g and,

varðZÞ ¼�2
1varðgÞ, ð17Þ

covð�, ZÞ ¼�2
1�1varðgÞ: ð18Þ

Hence for the standard IV estimator V is given by,

Vstandard ¼ ð�1�2 þ �2Þ2 þ �2
1�

2
� : ð19Þ

The adjusted IV estimator

The adjusted IV estimator makes use of the estimated
residuals, r, from the regression of the phenotype on
genotype to capture some of the variance explained by
confounding variables not included in the standard IV
estimator. Therefore the value of V is reduced com-
pared with the standard IV estimator. For the
adjusted IV estimator V is given by,

V ¼ varð�jZÞ � covð�jZ, rÞ2

varðrÞ : ð20Þ

If the confounder u is standardized the estimated
residuals and their variance are given by,

ri ¼ �2ui þ �i ð21Þ
varðriÞ ¼ �2

2 þ �2
� ð22Þ

The covariance between the log odds given the
phenotype information and the estimated residuals
is given by,

covð�jZ, rÞ ¼ �1�2 þ �2 �1

� �

�
1 0

0 �2
�

� �

�
�2

1

� �

ð23Þ

¼ �2ð�1�2 þ �2Þ þ �1�
2
� : ð24Þ

Since var(�|Z)¼Vstandard from the standard IV esti-
mator above, for the adjusted IV estimator we have,

Vadjusted ¼ ð�1�2 þ �2Þ2 þ �2
1�

2
� �

ð�2ð�1�2 þ �2Þ þ �1�
2
� Þ

2

�2
2 þ �2

�

:

ð25Þ

1168 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY



STATISTICS IN MEDICINE

Statist. Med. 2008; 27:6570–6582

Published online 3 September 2008 in Wiley InterScience

(www.interscience.wiley.com) DOI: 10.1002/sim.3423

Meta-analysis of Mendelian randomization studies incorporating
all three genotypes

Tom M. Palmer1,∗,†, John R. Thompson1 and Martin D. Tobin1,2

1Department of Health Sciences, University of Leicester, Leicester, U.K.
2Department of Genetics, University of Leicester, Leicester, U.K.

SUMMARY

In Mendelian randomization a carefully selected gene is used as an instrumental variable in the estimation
of the association between a biological phenotype and a disease. A study using Mendelian randomization
will have information on an individual’s disease status, the genotype and the phenotype. The phenotype
must be on the causal pathway between gene and disease for the instrumental-variable analysis to be
valid. For a biallelic polymorphism there are three possible genotypes with which to compare disease risk.
Existing methods select two of the three possible genotypes for use in a Mendelian randomization analysis.
Multivariate meta-analysis models for Mendelian randomization case–control studies are proposed, which
extend previous methods by estimating the pooled phenotype–disease association across both genotype
comparisons by using the gene–disease log odds ratios and differences in mean phenotypes. The methods
are illustrated using a meta-analysis of the effect of a gene related to collagen production on bone mineral
density and osteoporotic fracture. Copyright q 2008 John Wiley & Sons, Ltd.

KEY WORDS: Mendelian randomization; meta-analysis; instrumental-variable analysis

1. INTRODUCTION

Epidemiological studies investigating the relationship between biological risk factors and disease

can be affected by confounding or reverse causation. The method known as Mendelian randomiza-

tion has been proposed as a way of overcoming these difficulties [1, 2]. There has been a growing
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interest in the application of Mendelian randomization because of the increased availability of

genetic data.

Mendelian randomization analyses use an individual’s genotype as an instrumental variable

in order to estimate the association between a phenotype and the risk of disease. To fulfill the

conditions for an instrumental variable the selected gene must be associated with the disease through

the intermediate phenotype [3, 4]. The associations between the genotype and the phenotype and

between the genotype and the disease should not be confounded by lifestyle or environmental factors

because the genotype is assigned at conception before these exposures. As such an instrumental-

variable estimate of the association between the phenotype and the disease derived from the

gene–disease and gene–phenotype associations should also be free from confounding.

Statistical power can be low in individual Mendelian randomization studies, and large sample

sizes are required to produce precise estimates of the phenotype–disease association [5, 6]. There-

fore, it is an advantage if the genotype–disease and genotype–phenotype estimates are derived

from meta-analyses.

2. METHODS

This section describes the information available from a case–control study and the estimation of

the phenotype–disease association using Mendelian randomization. Methods are proposed for the

meta-analysis of Mendelian randomization studies incorporating all three genotypes by using two

genotype comparisons and an extension is given incorporating the genetic model-free approach

[7, 8].

2.1. The ratio of coefficients approach for case–control studies

Suppose that the genotype and phenotype information are collected in the same study. For a genetic

polymorphism with two alleles, the common and risk alleles denoted by g and G, there are three

possible genotypes; the common or wild-type homozygote (gg), the heterozygote (Gg), and the

mutant or uncommon homozygote (GG). Table I summarizes the genotype–disease and genotype–

phenotype associations in a case–control study. In the table the counts of cases and controls are

denoted by nd j , subscript d indicates case or control status (1 or 0) and subscript j denotes the

genotype (1, 2, or 3 corresponding to gg, Gg, and GG). The phenotype should be measured in the

controls since reverse causation might affect the level of the phenotype in the cases. The observed

mean phenotype levels in the controls are denoted by x j , which are estimates of the true mean

phenotype levels denoted by � j . The observed standard deviations of the phenotype levels are

denoted by sd j . The observed mean phenotype differences between either the heterozygotes or

the rare homozygotes versus the common homozygotes are given by �� j = x j −x1, the subscript

indicates the genotype with which the common homozygotes are compared. The true genotype–

phenotype mean differences are given by � j =� j −�1 and the genotype–disease log odds ratios

are denoted by � j .

In an individual study if the disease status variable were a continuous outcome measure, then the

application of instrumental-variable methods would produce an unbiased estimate of the phenotype–

disease association, assuming that the genotype met the core conditions to qualify as an instrumental

variable [9, 10]. However, case–control studies typically rely on binary disease status variables

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:6570–6582
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Table I. Data available from a Mendelian randomization case–control study.

Genotypes

gg Gg GG

Number of controls n01 n02 n03
Number of cases n11 n12 n13

Mean phenotypes in controls (s.d.) x1 (sd1) x2 (sd2) x3 (sd3)

that cause the instrumental-variable methods to produce biased estimates. The proposed approach

uses gene–disease and gene–phenotype log odds ratios as continuous outcome measures in order

to maintain linearity between studies [11]. The instrumental-variable method known as the ratio of

coefficients approach is used to estimate the phenotype–disease log odds ratio, denoted by �, using

equation (1) [12, 13]. Sometimes a unit increase in the phenotype will be biologically implausible

and so an arbitrary constant k can be included in the ratio so that � represents the log odds ratio

associated with a k-unit change in the phenotype [14]:

�[k] ≈
k�

�
(1)

From the data available from a Mendelian randomization case–control study reporting all three

genotypes, two non-redundant estimates of the phenotype–disease log odds ratio are possible. One

estimate of � is based on the comparison of the common homozygotes with the heterozygotes, using

�2 and �2. The other is based on the rare homozygotes compared with the common homozygotes,

using �3 and �3. In many situations it will be sensible to assume that the two estimates relate to

a common underlying log odds ratio. In the meta-analysis model these two estimates of � can be

combined into a single, more efficient, estimate.

2.2. Meta-analysis incorporating two genotype comparisons

The meta-analysis model incorporating two genotype comparisons builds on previous meta-analysis

models for Mendelian randomization studies for a single genotype comparison [13, 15]. The model

relates the pooled gene–disease log odds ratios and pooled gene–phenotype mean differences using

the ratio of coefficients approach from equation (1) through the mean vector of a multivariate

normal distribution. The model follows multivariate meta-analysis methodology, such as [16],

through the specification of the marginal distribution of the study outcome measures by combining

within- and between-study variance components. The approach is the multivariate analogue of the

univariate random-effects meta-analysis model of DerSimonian and Laird [17].

In the following notation subscript i denotes a study. It is assumed that the observed mean

phenotype differences are normally distributed such that �� j i ∼N(� j i , var(�� j i )) and that the true

study-specific mean differences are normally distributed such that � j i ∼N(� j , �2j), where �2j is

the between-study variance of the true study mean differences. Then the marginal distribution of

the observed mean differences is given by �� j i ∼N(� j , var(�� j i )+�2j ). Denoting the correlation

between the pooled mean phenotype differences by �, the multivariate Mendelian randomization

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:6570–6582
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(MVMR) meta-analysis model then takes the following form:
£
¤¤¤¤¤¥

��2i
��2i
��3i
��3i

¦
§§§§§̈ ∼MVN

»
¼¼¼¼½

£
¤¤¤¤¥

��2

�2

��3

�3

¦
§§§§̈ ,Vi +B1

¾
¿¿¿¿À

(2)

Vi =

£
¤¤¤¤¤¥

var(��2i ) 0 cov(��2i ,��3i ) 0

0 var(��2i ) 0 cov(��2i ,��3i )
cov(��3i ,��2i ) 0 var(��3i ) 0

0 cov(��3i ,��2i ) 0 var(��3i )

¦
§§§§§̈ (3)

B1 =

�
�22 �2�3�

�2�3� �23

�
⊗

�
�2 �

� 1

�
=

£
¤¤¤¤¤¥

�2�22 ��22 �2�2�3� ��2�3�

��22 �22 ��2�3� �2�3�

�2�2�3� ��2�3� �2�23 ��23

��2�3� �2�3� ��23 �23

¦
§§§§§̈ (4)

The terms in the within-study covariance matrix, Vi , are assumed to be known from the data

reported by the studies and it is also assumed that there is no correlation between the gene–

phenotype and gene–disease outcome measures as in [15]. From the use of the Kronecker product,

it is apparent that B1 is singular; however, Vi +B1 is not, which allows the calculation of the

likelihood.

The parameters of this model can be estimated by maximizing the log-likelihood. For i=1 . . .n

studies Yi represents the (4×1) vector of outcome measures, � represents the (4×1) mean vector

of the multivariate normal distribution, and Ri =Vi +B1. The log-likelihood of the multivariate

normal distribution up to a constant is given by

n�
i=1

−1/2{log(|Ri |)+(Yi −�)�R−1
i (Yi −�)} (5)

To improve the quadratic properties of the log-likelihood the log of �22 and �23 and the Fisher’s

z-transform of � were used in the maximization that was performed using the optim function in

R (version 2.7.0) [18].

2.3. Meta-analysis incorporating the genetic model-free approach

In the analysis of genetic association studies the mode of inheritance is usually unknown and so

an assumption is made about the underlying genetic model. In contrast, the genetic model-free

approach estimates this underlying genetic model from the available data through a parameter �

[7, 8]. When � is equal to 0, 0.5, and 1, this represents recessive, additive, and dominant models

for the risk allele, respectively.

The genetic model-free approach was devised in the context of a meta-analysis of two genotype

comparisons for gene–disease outcome measures [7, 8]. A consequence of assuming that the

phenotype–disease association is constant across the comparison of the heterozygotes with the

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:6570–6582
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common homozygotes and the comparison of the rare homozygotes with the common homozygotes

in equation (2) is that the genetic model is assumed to be equal using either gene–disease or

gene–phenotype outcomes such that

�=
�2

�3
=

�2

�3
(6)

The multivariate Mendelian randomization meta-analysis model incorporating the genetic model-

free approach (MVMR-GMF) is given by

£
¤¤¤¤¤¥

��2i
��2i
��3i
��3i

¦
§§§§§̈ ∼MVN

»
¼¼¼¼½

£
¤¤¤¤¥

���3

��3

��3

�3

¦
§§§§̈ , Vi +B2

¾
¿¿¿¿À

(7)

B2 =

�
�2�23 ��23

��23 �23

�
⊗

�
�2 �

� 1

�
=

£
¤¤¤¤¤¥

�2�2�23 ��2�23 �2��23 ���23

��2�23 �2�23 ���23 ��23

�2��23 ���23 �2�23 ��23

���23 ��23 ��23 �23

¦
§§§§§̈ (8)

Similar to the previous model B2 is singular but again Vi +B2 is not. When prior knowledge about

the gene suggests that 0<�<1, then the z-transform of � can be used in the maximization along

with the other transformations previously described to help improve the quadratic properties of

the log-likelihood. This model was also fitted by maximizing the log-likelihood in equation (5).

It is also possible to estimate the parameters of this model using Bayesian methods. One

Bayesian approach known as the product normal formulation (PNF) expresses the multivariate

normal distribution for each study’s outcome measures as a series of univariate normal distributions

linked by the relationships between the means [19] such that

��2i ∼ N(���3i ,var(��2i ))
��2i ∼ N(��3i ,var(��2i ))
��3i ∼ N(��3i ,var(��3i ))
��3i ∼ N(�3i ,var(��3i ))
�3i ∼ N(�3,�

2
3)

(9)

The following prior distributions were assumed for the parameters to be estimated:

�3∼N(0,1×106), �−2
3 ∼Gamma(0.1,0.1), �∼N(0,1×106), �∼Beta(1,1) (10)

The prior distributions on �3, �−2
3 , and � were chosen to be non-informative; for example, the

normal prior distribution is approximately uniform over a broad range. The Beta prior distribution

restricts � to lie between 0 and 1.
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2.4. Missing outcomes

In a meta-analysis it is possible that some studies may not report all four outcomes. If studies are

missing either gene–disease or gene–phenotype outcome measures these studies can be included

in the model fitting using the appropriate bivariate log-likelihood derived by taking the appropriate

rows and columns from equations (2)–(4) or equations (7), (3), and (8). This requires the assumption

that the missing outcomes are missing at random and not missing for a systematic reason.

2.5. Diagnostic plots

The results of a bivariate Mendelian randomization meta-analysis have been presented using a

two-column forest plot instead of two separate forest plots [13, 15]. For the models presented here

Grant 1996b

Garnero 1996

Hampson 1996

Sowers 1999

Harris 2000

Alvarez 1999

Uitterinden 1998b

Roux 1998

Grant 1996a

McGuigen 2000

Keen 1999

Hustmyer 1999

Weichetova 2000

Uitterinden 1998a

Braga 2000

Langdahl 1996

Liden 1998

Heegard 2000

0–1 –4 –2 –2 –1 –4 –2–2 1 2 3

Gg versus gg

0 2 4

Gg versus gg

0 1 2 3

GG versus gg

0 2 4

GG versus gg

Figure 1. Four-column forest plot of the COL1A1 multivariate meta-analysis. The genotype–phenotype

(G-P) columns are on a per 0.05g/cm2 scale.
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0 2 4

0

–2

–4

–4 –2

2

4 Gg versus gg

GG versus gg

Figure 2. Gene–disease log odds ratios versus gene–phenotype mean differences (per

0.05g/cm2) plotted with one standard deviation error bars. The gradient of the line is
given by �� from the MVMR meta-analysis model.

using four outcomes this can be extended to a four-column forest plot. To help compare the preci-

sion of the estimates, the two columns of gene–disease log odds ratios should use the same scale

as should the two columns of gene–phenotype mean differences. This plot is shown in Figure 1.

In the meta-analysis models the assumption of the common phenotype–disease association in

both genotype comparisons can be assessed by plotting the gene–disease outcome measures against

the gene–phenotype measures [13]. From the ratio of coefficients approach, the phenotype–disease

association can be expressed as the gradient of the line of best fit through the origin on this plot

that is shown in Figure 2.

In the MVMR-GMF meta-analysis model the assumption that the genetic model is the same

in the gene–disease and gene–phenotype outcomes can be assessed by plotting the Gg versus gg

comparison against the GG versus gg comparison for each set of outcomes, respectively [7]. From

the genetic model-free approach, � is given by the gradient of the line of best fit through the origin

on these plots that are shown in Figure 3.

3. APPLICATION TO BONE MINERAL DENSITY AND OSTEOPOROTIC FRACTURE

A meta-analysis that investigated the relationship between a polymorphism in the COL1A1 gene

and bone mineral density (BMD) and the risk of osteoporotic fracture is used to illustrate the

methodology [20].
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Figure 3. Graphical assessment of the estimated genetic model. The gradient of the bold lines is �� from
the MVMR-GMF model. A dashed line with gradient 0.5 representing the additive genetic model is
also shown; lines with gradients 0 and 1 would represent the recessive and dominant genetic models,

respectively: (a) genotype–phenotype information per 0.05g/cm2 and (b) genotype–disease information.

3.1. Description of the meta-analysis

The COL1A1 gene codes for one of the main forms of collagen and the Sp1 polymorphism has

been shown in epidemiological studies to be associated with both BMD and the risk of fracture

[21, 22]. This polymorphism is therefore a candidate for use as an instrumental variable in the

estimation of the association between BMD and fracture risk. The COL1A1 study presented two

meta-analyses based on a single nucleotide, G to T, polymorphism affecting a binding site for the

transcription factor Sp1 in the COL1A1 gene. One meta-analysis investigated studies into COL1A1

and BMD and the other meta-analysis investigated studies of COL1A1 and osteoporotic fracture

risk. It is therefore possible to apply Mendelian randomization meta-analysis to this example. The

studies of the gene–phenotype and gene–disease associations should be free from confounding,

whereas studies of the association of BMD with fracture may be confounded by factors such as

the subject’s age or the amount of exercise they take, and there may also be unknown confounders

that cannot be controlled for in the analysis.

The G and T alleles of the polymorphism in the COL1A1 gene are sometimes labelled as S

and s for the common and risk alleles, respectively, but for consistency with the Methods section

they are labelled as g and G. In estimating the phenotype–disease association using Mendelian

randomization, a one-unit change in the phenotype can have a large impact on disease risk. In

the example the standard deviation of the mean difference in BMD was 0.05g/cm2 between the

homozygote genotypes and 0.03g/cm2 for comparison of the heterozygotes versus the common

homozygotes. Therefore, the scaling constant, k, was set to 0.05 in the analysis to ensure that the

pooled phenotype–disease odds ratio was estimated on an appropriate scale.

3.2. Results of the meta-analysis

Figure 1 shows a four-column forest plot of the COL1A1 meta-analyses. The first and second

columns of the forest plot present the genotype–disease (G-D) and genotype–phenotype (G-P)

outcomes for the Gg versus gg genotypes, while the third and fourth columns show the outcomes

for the GG versus gg genotypes. The forest plot shows that there is an increased risk of fracture in
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the Gg over the gg genotype and an increased risk again in the GG genotype. The heterozygotes

and the rare homozygotes had lower BMD than the common homozygotes. The forest plot shows

that the comparison of the heterozygotes with the common homozygotes has more precise estimates

because the confidence intervals around the point estimates are narrower and shows less between-

study heterogeneity because the point estimates are more similar to one another.

The parameter estimates from the meta-analysis models incorporating all three genotypes are

given in Table II. In the tables of parameter estimates, NA indicates a parameter that was not

estimated in that particular model. The estimation of the PNF model was performed with a burn-

in of 10 000 iterations followed by a chain of 50 000 iterations and MCMC convergence was

assessed graphically. The estimates of � were similar across the three models with odds ratios of

osteoporotic fracture of 0.38 and 0.39 per 0.05g/cm2 increase in BMD. All three pooled odds

ratios were statistically significant at the 5 per cent level. The parameters in the PNF model had

wider 95 per cent credible intervals than the 95 per cent confidence intervals in the MVMR-GMF

model. The estimates of � in the MVMR-GMF and PNF models were close to 0.5 with both 95

per cent intervals including 0.5 suggesting an additive model.

As a comparison parameter estimates from bivariate meta-analysis models similar to those

considered by Thompson et al. [15] for the two genotype comparisons separately are given in

Table III. The pooled odds ratio of fracture was 0.34 (95 per cent CI: 0.17, 0.68) per 0.05g/cm2

for the Gg versus gg comparison and 0.42 (95 per cent CI: 0.25, 0.72) for the GG versus gg

comparison and the three estimates from the models in Table II are between the two values. The

estimates in Table II are also more precise, as shown by the narrower confidence intervals, because

of the inclusion of data for both genotype comparisons.

Parameter estimates from the bivariate meta-analysis models incorporating the genetic model-

free approach using the gene–disease and gene–phenotype associations separately as in [7] are

given in Table IV. The maximization of the gene–disease model failed to converge and so the

between-study variance, �2
�3
, was held constant. The fixed value of �2

�3
of 0.31 was taken from

the univariate random-effects meta-analysis of the GG versus gg gene–disease log odds ratios. The

estimate of � was 0.44 (95 per cent CI: 0.19, 0.64) from the gene–disease log odds ratios and 0.42

(95 per cent CI: 0.08, 0.67) from the gene–phenotype mean differences and the estimate of � from

the MVMR-GMF model is between these two values with increased precision.

Table II. Parameter estimates for meta-analysis models using studies
with complete and incomplete outcomes.

MVMR MVMR-GMF PNF
Estimate (95 per cent CI) Estimate (95 per cent CI) Estimate (95 per cent CrI)

Parameter (n=18) (n=18) (n=18)

� −0.96 (−1.39,−0.53) −0.94 (−1.41,−0.47) −0.97 (−1.53,−0.58)
exp(�) 0.38 (0.25,0.59) 0.39 (0.24,0.63) 0.38 (0.22,0.56)
� NA 0.43 (0.20,0.61) 0.47 (0.28,0.74)
�2 −0.47 (−0.63,−0.30) NA NA
�3 −0.85 (−1.35,−0.35) −0.94 (−1.34,−0.55) −0.92 (−1.44,−0.49)

�2
2

0.03 (0.001,1.17) NA NA

�2
3

0.53 (0.15,1.91) 0.35 (0.10,1.28) 0.43 (0.07,1.35)

� 0.05 (−0.89,0.91) NA NA
Log-likelihood −6.42 −11.24 NA
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Table III. Parameter estimates from bivariate Mendelian randomization meta-analysis
models using studies with complete and incomplete outcomes.

Gg versus gg GG versus gg
Estimate (95 per cent CI) Estimate (95 per cent CI)

Parameter (n=18) (n=18)

� −1.08 (−1.76,−0.39) −0.86 (−1.39,−0.33)
exp(�) 0.34 (0.17,0.68) 0.42 (0.25,0.72)
�2 −0.44 (−0.59,−0.28) NA
�3 NA −0.90 (−1.42,−0.38)

�2
2

0.02 (0.001,2.27) NA

�2
3

NA 0.56 (0.16,1.96)

Table IV. Parameter estimates from bivariate genetic model-free meta-analysis models.

Gene–disease Gene–phenotype
Estimate (95 per cent CI) Estimate (95 per cent CI)

Parameter (n=13) (n=15)

� 0.44 (0.19,0.64) 0.42 (0.08,0.67)
�3 0.96 (0.50,1.43) NA
exp(�3) 2.62 (1.65,4.16) NA

�2�3 Fixed at 0.31 NA

�3 NA −0.88 (−1.40,−0.37)

�2
3

NA 0.48 (0.10,2.31)

Figure 2 shows the diagnostic plot to assess the pooled estimate of � with the gene–phenotype

outcome measures on the x-axis and the gene–disease outcome measures on the y-axis. Given that

two genotype comparisons are assessed, each study can contribute two points to the plot. A line

with gradient equal to the pooled estimate of � is drawn on the plot to help assess the fit of the

model. Only one point did not lie within one standard deviation of the fitted line. Figure 2 also

shows that the point estimates from the GG versus gg comparison have greater between-study

heterogeneity because the point estimates are spread over a wider range, and they are less precise

than the point estimates from the Gg versus gg comparison.

Figure 3(a) and (b) assesses the estimated genetic model from the MVMR-GMF meta-analysis

model. On both figures lines have been plotted with gradients equal to �� from the MVMR-GMF

model and 0.5 to represent the additive genetic model. For this meta-analysis these figures are

sensitive to the fact that not all studies reported both sets of outcome measures and so not all

studies are shown on each plot.

4. DISCUSSION AND CONCLUSIONS

In observational epidemiology estimates from a Mendelian randomization analysis can provide

improved estimates of the association between a biological phenotype and a disease compared with

direct estimates of this association. The proposed meta-analysis models extend previous literature
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by incorporating both genotype comparisons for a given genetic polymorphism into the same

model. The MVMR-GMF and PNF meta-analysis models also incorporate the estimation of the

underlying genetic model for the risk allele in a Mendelian randomization analysis.

The proposed meta-analysis models rely on two important assumptions, namely that the

phenotype–disease association is the same in the Gg versus gg and the GG versus gg genotype

comparisons and that the underlying genetic model is the same in the gene–phenotype and gene–

disease associations. These assumptions are assessed in Figures 2 and 3. The modelling approach

could be extended to allow the phenotype–disease log odds ratio, �, to vary across studies; this

would most easily be implemented using Bayesian methodology. Figure 1 shows a four-column

forest plot for a Mendelian randomization meta-analysis across two genotype comparisons. From

the plot the relative precision of the estimates from the two genotype comparisons and the patterns

in the estimates of individual studies can be assessed.

Incorporating multiple genotype comparisons into a Mendelian randomization analysis is advan-

tageous because the comparison of the heterozygotes with the common homozygotes has the larger

sample size, while the comparison of the rare homozygotes with the common homozygotes has the

larger difference in disease risk. Therefore, the pooled estimates of the phenotype–disease associ-

ation from the MVMR, MVMR-GMF, and PNF models in Table II were between the estimates for

the two separate bivariate meta-analysis models using single genotype comparisons in Table III.

The pooled estimate of the phenotype–disease association in the MVMR and MVMR-GMF models

also showed increased precision over the single genotype comparison models because they included

more information. Another advantage of incorporating all three genotypes is that if some of the

studies omit to report either genotype–phenotype or genotype–disease outcome measures, then

they can be accommodated in the meta-analysis model using the appropriate bivariate normal

likelihood. This requires the additional assumption that the missing outcomes were missing at

random and not missing for a systematic reason such as reporting bias.

The estimation of the underlying genetic model for the risk allele, known as the genetic

model-free approach, can also be incorporated within this meta-analysis framework. The proposed

approach extends previous literature through the joint synthesis of the genotype–disease and

genotype–phenotype information to estimate the genetic model. This means that no strong assump-

tions about the genetic model are required prior to the analysis. In the example meta-analysis the

genetic model was estimated close to the additive genetic model. The interpretation of estimates

of � not at one of the standard genetic models has been discussed elsewhere [7].

The estimation of bivariate meta-analysis models has been shown to be problematic when corre-

lation parameters are near ±1 [16, 23–25]. To overcome this problem an alternative form of the

marginal distribution for a multivariate meta-analysis model has been proposed, which assumes

a common correlation term both within and between studies; see model A in [15] or [25]. The

advantage of this alternative covariance structure is that only study outcome measures and their

respective variances are required to fit the multivariate meta-analysis model; the same informa-

tion is required to perform the univariate meta-analyses for each outcome measure separately. A

further discussion of how the relative magnitudes of the within- and between-study covariance

matrices can affect parameter estimates in multivariate meta-analysis models is provided by Ishak

et al. [26]. To fit multivariate meta-analysis models, the restricted log-likelihood could be used in

the maximization as an alternative to the log-likelihood [25].

It would be possible to use these and the previously proposed bivariate meta-analysis models

for Mendelian randomization studies reporting continuous disease outcome measures since the

models assume that the log odds ratios are continuous and normally distributed. For case–control
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studies it would be possible to achieve similar pooled estimates of the phenotype–disease log odds

ratio across two genotype comparisons using either a retrospective or a prospective likelihood for

the genotype–disease outcome measures, which has previously been demonstrated for the genetic

model-free approach [8]. Meta-analysis models have been used to estimate other parameters of

interest from genetic data. For example, meta-regression has been used to investigate deviations

from Hardy–Weinberg equilibrium [27] and merged genotype comparisons have been used to

assess Hardy–Weinberg equilibrium and estimate the genetic model-free approach [28]. The work

presented here also has parallels with modelling baseline risk in meta-analyses [29, 30].

The limitations that apply to the analysis of a single study using Mendelian randomization also

apply to each of the studies in the meta-analysis. Therefore, it is important to assess that the selected

genotype fulfills the conditions of an instrumental variable [10] and whether any of the factors

that could potentially affect Mendelian randomization analyses such as pleiotropy or canalization

are present [31]. Some further issues relating to the causal interpretation of meta-analyses of

Mendelian randomization studies have been discussed by Nitsch et al. [32].

In conclusion, estimating the phenotype–disease association using separate genotype compar-

isons is often limited in that the comparison of the homozygote genotypes has a smaller sample

size, whereas the comparison of the heterozygotes with the common homozygotes involves a

smaller difference in disease risk. Pooling the phenotype–disease association across these compar-

isons produces an estimate that is a weighted average of the two but with increased precision.

This meta-analysis framework can incorporate the estimation of the genetic model-free approach

so that no strong prior assumptions about the underlying genetic model are required.
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