

Meta-analysis of Mendelian randomization studies

Tom Palmer, John Thompson and Martin Tobin

Department of Health Sciences, University of Leicester

12 April 2007

- ∢ ≣ → Department of Health Sciences. University of Leicester

< 🗇 ▶

Tom Palmer

Meta-analysis of MR studies

Outline

Introduction to MR

Case control study information

Example

Meta-analysis models & results

Summary

- ∢ ≣ → Department of Health Sciences, University of Leicester

< 17 ▶

Tom Palmer

Meta-analysis of MR studies

- Mendelian randomization is an active area of research in genetic-epidemiology.
- Aim: To extend existing meta-analysis models

Mendelian Randomization

- Dates back to [Katan, 1986]
- Recent interest due to the increasing use of genetic data in epidemiology [Katan, 2004]
- Bi-allelic polymorphism receive one allele from each parent
- ▶ Mendel's 2nd law: genes segregate independently
- Therefore individuals randomized to a genotype at conception
- Randomization by genotype is independent of confounding factors

- Mendelian randomization is an active area of research in genetic-epidemiology.
- Aim: To extend existing meta-analysis models

Mendelian Randomization

- Dates back to [Katan, 1986]
- Recent interest due to the increasing use of genetic data in epidemiology [Katan, 2004]
- ▶ Bi-allelic polymorphism receive one allele from each parent
- Mendel's 2nd law: genes segregate independently
- Therefore individuals randomized to a genotype at conception
- Randomization by genotype is independent of confounding factors

- Mendelian randomization is an active area of research in genetic-epidemiology.
- Aim: To extend existing meta-analysis models

Mendelian Randomization

- Dates back to [Katan, 1986]
- Recent interest due to the increasing use of genetic data in epidemiology [Katan, 2004]
- Bi-allelic polymorphism receive one allele from each parent
- Mendel's 2nd law: genes segregate independently
- ► Therefore individuals randomized to a genotype at conception
- Randomization by genotype is independent of confounding factors

- Mendelian randomization is an active area of research in genetic-epidemiology.
- Aim: To extend existing meta-analysis models

Mendelian Randomization

- Dates back to [Katan, 1986]
- Recent interest due to the increasing use of genetic data in epidemiology [Katan, 2004]
- Bi-allelic polymorphism receive one allele from each parent
- ► Mendel's 2nd law: genes segregate independently
- Therefore individuals randomized to a genotype at conception
- Randomization by genotype is independent of confounding factors

Introduction to MR	Case control study info	Meta-analysis models & results	

- Estimate phenotype-disease effect
- Confounding
- Reverse causation
- [Davey Smith et al., 2005]; phenotype C-Reactive Protein, disease - hypertension, genetic polymorphism - in the human CRP gene
- Statistically the genotype used as an instrumental variable
- Economics, IVs also applied to;
 - clinical trials [Angrist et al., 1996].
 - causal inference literature [Didelez and Sheehan, 2005]

Introduction to MR	Case control study info	Meta-analysis models & results	

- Estimate phenotype-disease effect
- Confounding
- Reverse causation
- [Davey Smith et al., 2005]; phenotype C-Reactive Protein, disease - hypertension, genetic polymorphism - in the human CRP gene
- Statistically the genotype used as an instrumental variable
- Economics, IVs also applied to;
 - clinical trials [Angrist et al., 1996].
 - causal inference literature [Didelez and Sheehan, 2005]

- Use gene-disease & gene-phenotype effect estimates to estimate the phenotype-disease relationship
- Standard IV technique if they were all linear TSLS
- > gene-disease log odds-ratio: θ , difference in mean phenotypes: δ , phenotype-disease log odds-ratio: η
- Ratio of coefficients approach [Thomas and Conti, 2004], for a k-unit change in the mean phenotype difference,

$$\eta_{[k]} \approx \frac{k\theta}{\delta}$$

Information from a case-control study

- A biallellic polymorphism (g,G)
 - g: common allele G: risk allele
- ▶ 3 genotypes: gg, Gg, GG; j = 1, 2, 3
- Observed cases and controls y_{dj} , d = 0,1; control/case

cell probabilities p_{dj}

		Genotype	
		Gg	GG
Controls	y ₀₁ , p ₀₁	y ₀₂ , p ₀₂	У ₀₃ , Р ₀₃
Cases	<i>y</i> ₁₁ , <i>p</i> ₁₁	y ₁₂ , p ₁₂	y ₁₃ , p ₁₃
Mean phenotype levels	μ_1	μ_2	μ_3

Mean phenotype levels from controls

Information from a case-control study

- A biallellic polymorphism (g,G)
 g: common allele G: risk allele
- ▶ 3 genotypes: gg, Gg, GG; j = 1, 2, 3
- Observed cases and controls y_{dj} , d = 0,1; control/case
- cell probabilities p_{dj}

	Genotype		
	gg Gg GG		
Controls	y ₀₁ , p ₀₁	y ₀₂ , p ₀₂	у ₀₃ , р ₀₃
Cases	y ₁₁ , p ₁₁	y ₁₂ , p ₁₂	y ₁₃ , p ₁₃
Mean phenotype levels	μ_1	μ_2	μ_3

Mean phenotype levels from controls

Information from a case-control study

- A biallellic polymorphism (g,G)
 g: common allele G: risk allele
- ▶ 3 genotypes: gg, Gg, GG; j = 1, 2, 3
- Observed cases and controls y_{dj} , d = 0,1; control/case
- cell probabilities p_{dj}

	Genotype		
	gg Gg GG		
Controls	y ₀₁ , p ₀₁	y ₀₂ , p ₀₂	у ₀₃ , р ₀₃
Cases	y ₁₁ , p ₁₁	y ₁₂ , p ₁₂	y ₁₃ , p ₁₃
Mean phenotype levels	μ_1	μ_2	μ_{3}

Mean phenotype levels from controls

Example meta-analysis

- Mann (2001): Bone mineral denisty (BMD) & risk of osteoporotic fracture
- COL1A1 gene: codes for collagen
- Average BMD lower for GG versus gg
- Risk of fracture increased for GG versus gg

Department of Health Sciences, University of Leicester

Meta-analysis results in a four column forest plot

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- - \blacktriangleright Existing meta-analysis models estimate η based on either the Gg versus gg genotype comparison or the GG versus gg comparison, [Thompson et al., 2005].
 - Gg vs gg: Bigger sample size; smaller difference in disease risk
 - ► GG vs gg: Smaller sample size; bigger difference in disease risk
 - Proposed approach: Estimate η across both genotype comparisons

- phenotype-disease relationship common across studies
- phenotype-disease relationship common across genotype

- - \blacktriangleright Existing meta-analysis models estimate η based on either the Gg versus gg genotype comparison or the GG versus gg comparison, [Thompson et al., 2005].
 - Gg vs gg: Bigger sample size; smaller difference in disease risk
 - ► GG vs gg: Smaller sample size; bigger difference in disease risk
 - Proposed approach: Estimate η across both genotype comparisons

Modelling assumptions

- phenotype-disease relationship common across studies
- phenotype-disease relationship common across genotype comparisons

Multivariate meta-analysis models

- Genotype comparison 2:(Gg,gg), 3:(GG,gg) for study *i* (θ_{2i}, θ_{3i}): gene-disease log odds-ratios
 (δ_{2i}, δ_{3i}): difference in mean phenotypes
- Inference at the population level
- Marginal distribution: combine within and between study distributions

Department of Health Sciences, University of Leicester

Meta-analysis of MR studies

Multivariate meta-analysis models

- Genotype comparison 2:(Gg,gg), 3:(GG,gg) for study *i* (θ_{2i}, θ_{3i}): gene-disease log odds-ratios
 (δ_{2i}, δ_{3i}): difference in mean phenotypes
- Inference at the population level
- Marginal distribution: combine within and between study distributions

v

$$\begin{bmatrix} \theta_{2i} \\ \delta_{2i} \\ \theta_{3i} \\ \delta_{3i} \end{bmatrix} \sim \mathsf{MVN} \begin{pmatrix} \psi = \begin{bmatrix} \eta \delta_2 \\ \delta_2 \\ \eta \delta_3 \\ \delta_3 \end{bmatrix}, \mathbf{V}_i + \mathbf{B} \end{pmatrix}.$$

$$\mathbf{V}_i = \begin{bmatrix} \mathsf{v}(\theta_{2i}) & 0 & \mathsf{v}(\theta_{2i}, \theta_{3i}) & 0 \\ 0 & \mathsf{v}(\delta_{2i}) & 0 & \mathsf{v}(\delta_{2i}, \delta_{3i}) \\ \mathsf{v}(\theta_{3i}, \theta_{2i}) & 0 & \mathsf{v}(\theta_{3i}) & 0 \\ 0 & \mathsf{v}(\delta_{3i}, \delta_{2i}) & 0 & \mathsf{v}(\delta_{3i}) \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \eta^2 \tau_2^2 & \eta \tau_2^2 & \eta^2 \tau_2 \tau_3 \rho & \eta \tau_2 \tau_3 \rho \\ \eta^2 \tau_2 \tau_3 \rho & \eta \tau_2 \tau_3 \rho & \eta \tau_3^2 & \eta \tau_3^2 \\ \eta^2 \tau_2 \tau_3 \rho & \eta \tau_2 \tau_3 \rho & \eta \tau_3^2 & \tau_3^2 \\ \eta \tau_2 \tau_3 \rho & \eta \tau_2 \tau_3 \rho & \eta \tau_3^2 & \tau_3^2 \end{bmatrix}.$$

between-study variance of the
$$\delta_{2i}$$
's

- $\tau_2^2 \\ \tau_3^2$ between-study variance of the δ_{3i} 's
- between-study correlation between the δ_{2i} 's and the δ_{3i} 's ρ

Meta-analysis of MR studies

Maximum likelihood estimation

Log-likelihood of the multivariate Normal distribution,

$$\log L \propto \sum_{i=1}^{n} -\frac{1}{2} \log(\det(\mathbf{V}_{i}+\boldsymbol{\Sigma})) - \frac{1}{2} (\underline{x_{i}}-\underline{\psi})^{T} (\mathbf{V}_{i}+\boldsymbol{\Sigma})^{-1} (\underline{x_{i}}-\underline{\psi})$$

- Maximisation using the Newton-Raphson algorithm
- Argument for using REML form of the likelihood for marginal models

Maximum likelihood estimation

Log-likelihood of the multivariate Normal distribution,

$$\log L \propto \sum_{i=1}^{n} -\frac{1}{2} \log(\det(\mathbf{V}_{i}+\boldsymbol{\Sigma})) - \frac{1}{2} (\underline{x_{i}}-\underline{\psi})^{T} (\mathbf{V}_{i}+\boldsymbol{\Sigma})^{-1} (\underline{x_{i}}-\underline{\psi})$$

- Maximisation using the Newton-Raphson algorithm
- Argument for using REML form of the likelihood for marginal models

Introduction to WIR	Case control study into	Example	meta-analysis models & results	Summary
Results				
	Method of estimation	OR _{00.05}	95% C.I./Cr.I.	

Method of estimation	$OR_{pd,0.05}$	95% C	/Cr.I.
Gg vs gg	0.57	0.42	0.77
GG vs gg	0.40	0.28	0.57
Combined	0.50	0.39	0.62

- Gg vs gg expecting narrower CI but wider
- GG vs gg bigger difference in disease risk OR_{pd} further from 1
- combined model weighted average of the separate estimates, with a narrower CI due to increased number of studies
- All results qualitatively the same
- 0.05 unit increase in BMD, implies typical patient at 40% risk of Osteoporotic fracture

Assessment of a common phenotype-disease odds-ratio

・ロト ・日子・ ・ヨト・

- MR assumptions fit straight line through the origin
- η gradient of the line

Incorporating the genetic model-free approach

$$\lambda = \frac{\theta_2}{\theta_3} = \frac{\delta_2}{\delta_3}$$

Interpretation of λ

λ	Genetic model
0	Recessive
0.5	Co-dominant
1	Dominant
> 1	Over-dominant, heteresis

• Meta-analysis models to estimate λ , [Minelli et al., 2005].

Department of Health Sciences, University of Leicester

Tom Palmer

Meta-analysis of MR studies

$$\begin{bmatrix} \theta_{2i} \\ \delta_{2i} \\ \theta_{3i} \\ \delta_{3i} \end{bmatrix} \sim \mathsf{MVN} \left(\begin{bmatrix} \eta \lambda \delta \\ \lambda \delta \\ \eta \delta \\ \delta \end{bmatrix}, \mathbf{V}_i + \mathbf{\Sigma} \right),$$
$$\mathbf{\Sigma} = \begin{bmatrix} \eta^2 \lambda^2 \tau^2 & \eta \lambda^2 \tau^2 & \eta^2 \lambda \tau^2 & \eta \lambda \tau^2 \\ \eta \lambda^2 \tau^2 & \lambda^2 \tau^2 & \lambda \eta \tau^2 & \lambda \tau^2 \\ \eta^2 \lambda \tau^2 & \lambda \eta \tau^2 & \eta^2 \tau^2 & \eta \tau^2 \\ \eta \lambda \tau^2 & \lambda \tau^2 & \eta \tau^2 & \tau^2 \end{bmatrix}$$

• τ^2 the between-study variance of the difference in mean phenotypes of the GG versus gg comparison

A ►

Bayesian estimation

Product Normal Formulation [Spiegelhalter, 1998]

4 outcomes - univariate Normal distributions

 $\begin{aligned} \theta_{2i} &\sim \mathsf{N}(\eta\lambda\delta_i, \mathsf{v}(\theta_{1i})), & \delta_{2i} &\sim \mathsf{N}(\lambda\delta_i, \mathsf{v}(\delta_{1i})) \\ \theta_{3i} &\sim \mathsf{N}(\eta\delta_i, \mathsf{v}(\theta_{2i})), & \delta_{3i} &\sim \mathsf{N}(\delta_i, \mathsf{v}(\delta_{2i})) \end{aligned}$

- The correct covariances are induced in the model due to the relationships between the means and the sequential parameter updating under Gibbs sampling
- Prior distributions vague

 $\delta_i \sim \mathsf{N}(0, 1 imes 10^6), \quad \eta \sim \mathsf{N}(0, 1 imes 10^6), \quad \lambda \sim \mathsf{Beta}(0.5, 0.5)$

Bayesian estimation

- Product Normal Formulation [Spiegelhalter, 1998]
- 4 outcomes univariate Normal distributions

$$\begin{array}{ll} \theta_{2i} \sim \mathsf{N}(\eta\lambda\delta_i, \mathsf{v}(\theta_{1i})), & \delta_{2i} \sim \mathsf{N}(\lambda\delta_i, \mathsf{v}(\delta_{1i})) \\ \theta_{3i} \sim \mathsf{N}(\eta\delta_i, \mathsf{v}(\theta_{2i})), & \delta_{3i} \sim \mathsf{N}(\delta_i, \mathsf{v}(\delta_{2i})) \end{array}$$

- The correct covariances are induced in the model due to the relationships between the means and the sequential parameter updating under Gibbs sampling
- Prior distributions vague

 $\delta_i \sim \mathsf{N}(0, 1 \times 10^6), \quad \eta \sim \mathsf{N}(0, 1 \times 10^6), \quad \lambda \sim \mathsf{Beta}(0.5, 0.5)$

Results

Method of estimation	OR _{pd,0.05}	95% C.I./Cr.I.		λ	95% C	.I./Cr.I.
ML	0.42	0.28	0.61	0.33	0.19	0.47
Bayesian	0.46	0.32	0.61	0.30	0.17	0.45

Genetic model between recessive and co-dominant

Department of Health Sciences, University of Leicester

3

・ロン ・回 と ・ ヨン ・

Tom Palmer

Meta-analysis of MR studies

Summary

- Mendelian randomization depends on random allocation of an individual's genotype
- Genotype used as an instrumental variable
- Meta-analysis model joint analysis of two genotype comparisons
- Meta-analysis model incorporating the genetic model-free approach

Angrist, J., Imbens, G., and Rubin, D. (1996).

Identification of causal effects using instrumental variables.

Journal of the American Statistical Association, 91(434):444-455.

Davey Smith, G., D.A.Lawlor, Harbord, R., Timpson, N., Rumley, A., Lowe, G., Day, I., and Ebrahim, S. (2005).

 $\label{eq:sociation} Association \mbox{ of C-Reactive Protein with Blood Pressure and Hypertension: Life Course Confounding and Mendelian Randomization Tests of Causality.$

Arteriosclerosis, Thrombosis and Vascular Biology, 25:1051-1056.

Didelez, V. and Sheehan, N. (2005).

Mendelian randomisation and instrumental variables: What can and what can't be done. University of Leicester, Department of Health Sciences Technical Report, 05-02.

Katan, M. (1986).

Apolipoprotein e isoforms, serum cholesterol, and cancer. *Lancet*, 327:507–508.

Katan, M. (2004).

Commentary: Mendelian randomization, 18 years on. *International Journal of Epidemiology*, 33(1):10–11.

Minelli, C., Thompson, J., Abrams, K., Thakkinstian, A., and Attia, J. (2005).

The choice of a genetic model in the meta-analysis of molecular association studies. International Journal of Epidemiology, 34:1319–1328.

Spiegelhalter, D. (1998).

Bayesian graphical modelling: a case-study in monitoring health outcomes. *Applied Statistics*, 47(1):115–133.

Thomas, D. and Conti, D. (2004).

Commentary: The concept of 'mendelian randomization'. International Journal of Epidemiology, 33:21–25.

Thompson, J., Minelli, C., Abrams, K., Tobin, M., and Riley, R. (2005). Meta-analysis of genetic studies using Mendelian randomization - a multivariate approach. *Statistics in Medicine*, 24:2241–2254.

크