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Meta-analytic structural
equation modelling

• Studies report cov/corr matrices between variables (N, x)
• SEMs and causal inference: Vanderweele (2012), De Stavola

et al. (2015)
• SEMs for MR: Shin et al. (2014); Burgess et al. (2015);

Evans & Davey Smith (2015); Ziegler et al. (2015)
• Cheung & Chan (2005); Meta-analytic structural equation

modeling: A two stage approach
• Cheung (2015a) Meta-analysis: A structural equation

modeling approach.
• metaSEM package for R (Cheung, 2015b); calls OpenMx (Boker

et al. , 2011)
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SEMs and meta-analysis
models

• Using GLMM commands to fit meta-analysis models:
1. random effects - numerical integration
2. constraints - especially on residual variance - correct SEs

• Normand (1999) - SAS proc mixed
• Van Houwelingen et al. (2002) - SAS proc mixed
• Stijnen et al. (2010) - SAS proc nlmixed
• Bagos (2015) - Stata gllamm

• Using SEM commands to fit meta-analysis models:
• Cheung (2008) - Mplus
• Cheung (2010) - LISREL
• Cheung (2013) - R metaSEM, OpenMx; MPlus
• Palmer & Sterne (2015) - Stata sem, gsem
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SEMs: RAM specification

• SEM specifications: LISREL, EQS, Mplus, RAM (OpenMx &
metaSEM)

• 4 matrices F , M , A, and S, and a vector v
• v represents all variables in the model.
• A specifies regression coefficients and factor loadings (single

headed arrows).
• S var-covar matrix or corr matrix of variables (double headed

arrows).
• M means of the variables.
• F selection matrix indicating the observed variables.
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RAM speicification II

• SEM implied means, µ(θ), and covariance matrix Σ(θ), where
I is an identity matrix, are

µ(θ) = F (I − A)−1M

Σ(θ) = F (I − A)−1S((I − A)−1)′F ′.
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Mendelian randomization
using SEM

• (Full information) ML estimation of linear instrumental variable
model
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Mendelian randomization
using SEM

• (Full information) ML estimation of linear instrumental variable
model

DAG

(COR) (7). Various approaches have been proposed (8–11)
and compared (12, 13) in the statistical, econometric, and
epidemiologic literature, but these often consider only a
binary phenotype. Given the increasing use of Mendelian
randomization (14), epidemiologists need to be aware of
the assumptions required for IV estimation of these causal
parameters.

In this paper, we describe and compare IV estimators of
the CRR and COR. We compare resulting estimates in the
context of an example investigating the effect of body mass
index (BMI; weight (kg)/height (m)2) on the risk of asthma
in children using fat mass and obesity-associated (FTO)
genotypes as an instrument. We investigate reasons for dif-
ferences between estimates using a simulation study based
on the example.

THE IV ASSUMPTIONS

In this section, we describe aspects of causal inference
relevant to IV analysis. We use the following notation: Y
denotes the outcome variable, X the phenotype, Z the IV
(genotype), U a set of unmeasured confounding variables,
and p the probability of the outcome; we also define logit
(p) ¼ log(p/(1 � p)) and its inverse expit(x) ¼ exp(x)/(1 þ
exp(x)). The subscript i denotes an individual.

In the context of Mendelian randomization, the IV as-
sumptions (7), which are common to all IV estimators, state
that genotype should be

1) associated with the phenotype,

2) independent of the unmeasured confounding factors,
and

3) independent of the outcome given the phenotype and
unmeasured confounding factors.

The conditional independencies implied by these assump-
tions can be encoded in a directed acyclic graph (15) as
shown on the left-hand side of Figure 1 (7). Assumption 1
is represented by the arrow between Z and X, while assump-
tions 2 and 3 are encoded by the absence of arrows. The
dotted lines in the directed acyclic graph on the right-hand
side of Figure 1 indicate associations (in either direction)
or associations due to common causes that are excluded. If
measured covariates are controlled for in the analysis, the IV
assumptions are conditional on these.

To draw causal inferences, it is additionally necessary
to make a ‘‘structural’’ assumption, which specifies how
intervention on the phenotype operates on the system of
variables (7, 16). In our context, this says that intervention
does not affect genotype or the confounders and only af-
fects the outcome through the changed value of the phe-
notype (7, 17). Using Pearl’s do() operator to express the
fact that X is set to a particular value as a result of in-
tervention (18) and the symbol ? to denote conditional
independence, the IV and structural assumptions imply
(Figure 2) that

Z ? Y jdoðXÞ: ð1Þ

The property in equation 1 is analogous to the ‘‘exclusion
restriction’’ (17), which has also been described by Hernán
and Robins (9) in terms of potential outcomes. The exclusion
restriction implies the ‘‘conditional mean independence’’ as-
sumption, that under intervention in X the mean of Y is in-
dependent of Z, which is a weaker form of the exclusion
restriction and is sufficient for some estimation approaches.

For a continuous outcome, it is common to target an ‘‘av-
erage causal effect’’ (ACE)—the difference in the expected
value of the outcome for a 1-unit difference in the phenotype:

ACEðx0; x0 þ 1Þ ¼ EðYjdoðX ¼ x0 þ 1ÞÞ � EðYjdoðX ¼ x0ÞÞ:
ð2Þ

ACEs can also be estimated for binary outcomes, in which
case they represent causal risk differences (1). For a binary
outcome, the CRR for a 1-unit change in the phenotype
is defined as the ratio of the probabilities of disease when
X is set to x0 and x0 þ 1:

CRRðx0; x0 þ 1Þ ¼ PðY ¼ 1jdoðX ¼ x0 þ 1ÞÞ
PðY ¼ 1jdoðX ¼ x0ÞÞ

: ð3Þ

Similarly, for a 1-unit change in the phenotype, the COR
is defined as the ratio of the odds of disease when X is set
to x0 and x0 þ 1:

Z X Y

U

G X Y

U

Figure 1. Directed acyclic graph (DAG) encoding the instrumental
variable (IV) assumptions (left) and DAG encoding the IV assump-
tions with excluded associations shown by dotted lines (right). U, un-
measured confounders; X, phenotype; Y, outcome variable; Z,
instrumental variable.

Z do(X) Y

U

Figure 2. Directed acyclic graph representing the exclusion restric-
tion—the instrumental variable assumptions under intervention in X
(denoted do(X)).

CORðx0; x0 þ 1 Þ ¼ PðY ¼ 1jdoðX ¼ x0 þ 1ÞÞPðY ¼ 0jdoðX¼ x0ÞÞ
PðY ¼ 0jdoðX¼ x0 þ 1ÞÞPðY ¼ 1jdoðX¼ x0ÞÞ

:

ð4Þ
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Y = β0 + β1X + ε1,

X = α0 + α1G + ε2,

(
ε1
ε2

)
∼ MVN(0,Σ)
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Example fit in OpenMx I

• Simulate a single study

n = 10000
G = Binomial(2, p = 0.3)

Y = 1 + X + ε1,

X = 1 + G + ε2,(
ε1
ε2

)
∼ MVN

(
0, Σ =

[
1 0.75

0.75 1

])
• Observed means and covariances (first stage R2 = 0.3)

Means =

y : 2.60
x : 1.61
g : 0.61

 Covariances =

3.92 2.17 0.43
2.17 1.43 0.42
0.43 0.42 0.42


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Example fit in OpenMx II

A =

0 β1 0
0 0 α1
0 0 0

 , S =

 σ2
ε1

σε1ε2 0
σε1ε2 σ2

ε2
0

0 0 σ2
g

 , M =

β0
α0
ḡ

 , F = I(3)

library(OpenMx)

# define model

tsls.model <- mxModel("TSLS", mxData(observed=my.cov, type="cov",

numObs=n, means=my.means), A1, S1, M1, F1,

mxExpectationRAM(A="A1", S="S1", F="F1", M="M1",

dimnames = c("y","x","g")), mxFitFunctionML())

# fit model

tsls.fit <- mxRun(tsls.model)

if (tsls.fit$output$status$code <= 1) summary(tsls.fit)
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Example fit in OpenMx III

> summary(tsls.fit)

Summary of TSLS

free parameters:

name matrix row col Estimate Std.Error A

1 beta1 A1 1 2 1.0018335 0.015291192

2 alpha1 A1 2 3 1.0064283 0.015391885

3 errory S1 1 1 0.9987171 0.026822173

4 errorxy S1 1 2 0.7455682 0.019717928

5 errorx S1 2 2 0.9991108 0.014130145

6 varg S1 3 3 0.4218099 0.005965600

7 beta0 M1 1 y 0.9870826 0.026577242

8 alpha0 M1 1 x 0.9950869 0.013729530

9 meang M1 1 g 0.6115000 0.006494691

...

• Estimation using standardised variables (correlations)
β1s = β1

sd(x)
sd(y) = 1.002 × 1.19/1.98 = 0.604
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Meta-analysis

Approaches:
• Fit TSLS in each study and then meta-analyse
• Estimate numerator (YG) and denominator (XG) in each

study, meta-analyse, then calculate ratio
• Fit SEM to all studies (parameters constrained equal across

studies, e.g. Stata ssd framework)
• METASEM:

1. Meta-analyse corr/covs (GLS) then weighted SEM
2. TSSEM: multi-group SEM then weighted SEM
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TSSEM - stage 1

• Stage 1: estimate pooled correlations/covariances using a
multigroup SEM

• Correlations/covariances constrained equal in each study
• Estimation weighted by the var-covar matrices of each study’s

corr/cov matrix

F1
1

F2
1

F3
1

g

ε1 0

x

ε2 0

y

ε3 0

0

0

0

11 / 27



TSSEM - stage 1

• Stage 1: estimate pooled correlations/covariances using a
multigroup SEM

• Correlations/covariances constrained equal in each study
• Estimation weighted by the var-covar matrices of each study’s

corr/cov matrix

F1
1

F2
1

F3
1

g

ε1 0

x

ε2 0

y

ε3 0

0

0

0

F1
.42

F2
1.4

F3
3.9

g
.61

ε1 0

x
1.6

ε2 0

y
2.6

ε3 0

.42

.43

2.2

1 1

0

1

0

0

11 / 27



TSSEM - stage 1

• Stage 1: estimate pooled correlations/covariances using a
multigroup SEM

• Correlations/covariances constrained equal in each study
• Estimation weighted by the var-covar matrices of each study’s

corr/cov matrix

F1
1

F2
1

F3
1

g

ε1 0

x
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0

0
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x
1.6
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2.6
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1

0
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Standardized

F1
1

F2
1

F3
1

sg
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sx
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ε2 0

sy
9.5e-17

ε3 0
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.33
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1 1
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1
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TSSEM - stage 2

• Fit SEM using ADF (GMM) estimation weighted by inverse of
var-cov matrix of pooled correlation matrix

rF = vechs(Stage 1 pooled cov/corr matrix)

VF = Var-covar matrix of Stage 1 pooled cov/corr matrix

ρ(θ) = vechs(Σ) = vechs(F (I − Aθ)−1Sθ((I − Aθ)−1)′F ′)

ADF minimises: (rF − ρ(θ))′V−1
F (rF − ρ(θ))
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TSSEM example

• Simulate 5 studies from same model (N = 1000, R
2

= 0.3)
• Fit TSLS in each study and meta-analyse

Unstandardised variables

FE Model

0.85 0.95 1.05 1.15

Observed Outcome

Study  5

Study  4

Study  3

Study  2

Study  1

1.06 [ 0.98 , 1.14 ]

1.00 [ 0.90 , 1.10 ]

1.08 [ 0.99 , 1.16 ]

0.99 [ 0.90 , 1.09 ]

1.05 [ 0.96 , 1.14 ]

1.04 [ 1.00 , 1.08 ]
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TSSEM example

• Simulate 5 studies from same model (N = 1000, R
2

= 0.3)
• Fit TSLS in each study and meta-analyse
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0.85 0.95 1.05 1.15
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Study  3

Study  2

Study  1

1.06 [ 0.98 , 1.14 ]

1.00 [ 0.90 , 1.10 ]

1.08 [ 0.99 , 1.16 ]

0.99 [ 0.90 , 1.09 ]

1.05 [ 0.96 , 1.14 ]

1.04 [ 1.00 , 1.08 ]

Standardised variables

FE Model

0.50 0.55 0.60 0.65 0.70 0.75

Observed Outcome

Study  5

Study  4

Study  3

Study  2

Study  1

0.64 [ 0.59 , 0.69 ]

0.60 [ 0.54 , 0.66 ]

0.65 [ 0.60 , 0.70 ]

0.60 [ 0.54 , 0.66 ]

0.63 [ 0.57 , 0.68 ]

0.63 [ 0.60 , 0.65 ]
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TSSEM example
Stage 1: covariances

> fixed1 <- tssem1(scovs, sampsizes, method="FEM", cor.analysis=FALSE)

> summary(fixed1)

...

Coefficients:

Estimate Std.Error z value Pr(>|z|)

S[1,1] 4.0290830 0.0806222 49.975 < 2.2e-16 ***

S[1,2] 2.2430250 0.0467777 47.951 < 2.2e-16 ***

S[1,3] 0.4400050 0.0191257 23.006 < 2.2e-16 ***

S[2,2] 1.4639978 0.0292948 49.975 < 2.2e-16 ***

S[2,3] 0.4246214 0.0124470 34.114 < 2.2e-16 ***

S[3,3] 0.4054322 0.0081127 49.975 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

...

> coef(fixed1)

y x g

y 4.029083 2.2430250 0.4400050

x 2.243025 1.4639978 0.4246214

g 0.440005 0.4246214 0.4054322
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TSSEM example
Stage 2: covariances

> fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,

+ diag.constraints=TRUE, intervals.type="LB")

> summary(fixed2)

...

95% confidence intervals: Likelihood-based statistic

Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)

beta1 1.03623 NA 1.01956 1.05249 NA NA

alpha1 1.04733 NA 1.02950 1.06517 NA NA

ey 0.95251 NA 0.90865 0.99738 NA NA

exy 0.72599 NA 0.68835 0.76407 NA NA

ex 1.01928 NA 0.97924 1.05927 NA NA

• FE MA of TSLS estimates: 1.04 (1.00, 1.08)
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TSSEM example
Stage 1: correlations

> fixed1s <- tssem1(sscovs, sampsizes, method="FEM", cor.analysis=TRUE)

> summary(fixed1s)

...

Coefficients:

Estimate Std.Error z value Pr(>|z|)

S[1,2] 0.9235678 0.0020814 443.722 < 2.2e-16 ***

S[1,3] 0.3446074 0.0124713 27.632 < 2.2e-16 ***

S[2,3] 0.5514068 0.0098498 55.982 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

...

> coef(fixed1s)

sy sx sg

sy 1.0000000 0.9235678 0.3446074

sx 0.9235678 1.0000000 0.5514068

sg 0.3446074 0.5514068 1.0000000
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TSSEM example
Stage 2: correlations

> fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,

+ diag.constraints=TRUE, intervals.type="z")

> summary(fixed2s)

...

95% confidence intervals: z statistic approximation

Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)

beta1 0.6249602 0.0122872 0.6008779 0.6490426 50.863 < 2.2e-16 ***

alpha1 0.5514068 0.0116996 0.5284761 0.5743376 47.130 < 2.2e-16 ***

ey 0.2361890 0.0086635 0.2192090 0.2531691 27.263 < 2.2e-16 ***

exy 0.2986075 0.0114840 0.2760993 0.3211157 26.002 < 2.2e-16 ***

ex 0.6959505 0.0129382 0.6705921 0.7213089 53.790 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

...

• FE MA of standardised TSLS: 0.63 (0.60, 0.65)
• Convert to unstandardised scale: β1 = β1s

sd(y)
sd(x) – need

average sd(x) and sd(y) to rescale
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Mediation model: concept

• Concerns about possible measurement error/confounding in
the mediator

• Cole & Preacher (2014) outline problems using imprecisely
measured variables in path analysis:

• Under or over-estimate effects
• Reduced power
• Valid models appear invalid
• Differential measurement error in various parts of model can

change conclusions
• Problems get worse as models get more complex

• Instrument the mediator as well as the exposure
• Similar model proposed in clinical trials (Imai et al. , 2013)
• Non-parametric SEM / 3SLS estimation (Tchetgen Tchetgen

& Lin, 2012)
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Mediation model:
definition

DAG
Relton & Davey Smith (2012)

Furthermore, where such genetic determinants of
DNA methylation exist in a heterozygous state, they
may result in allele-specific methylation (ASM),49 i.e.
differences in methylation between two paired al-
leles. Estimates suggest that �20% of heterozygous
SNPs (mainly those located at CpG sites) are asso-
ciated with ASM.104,109 DNA methylation shows re-
gional correlation, although this requires formally
establishing in each experimental- or tissue-specific
setting and should not be an a priori assumption.
It should therefore be feasible to identify cis-SNPs
that correlate with methylation across a specific
region, allowing methylation patterns to be con-
sidered at the haplotype level; a concept promoted
by Bell and colleagues.110 In this way, the use of
genetic variants as a proxy for DNA methylation
levels, in particular the abundance of cis-acting elem-
ents, adds substantially to the feasibility of the two-
step epigenetic Mendelian randomization approach.

Mediation of effects of exposures
on disease outcomes
In epidemiological studies, the identification and
analysis of mediation is often a key focus. For ex-
ample, higher BMI is associated with elevated risk
of CHD, and some of this association may reflect a
causal influence of BMI on blood pressure, which
in turn influences CHD risk. In this situation,
blood pressure would be a partial mediator of the
influence of BMI on CHD, with the important
implication that therapeutically modifying blood
pressure could break this link. Figure 3 illustrates
these processes, which are sometimes referred to as
direct and indirect effects. The figure also highlights
how particular sources of bias and confounding
can occur in such mediation analyses111–114 and the
potential for residual confounding (caused by what
has been referred to as collider bias) and measure-
ment error in the mediator113 to distort interpret-
ations of such data. Below we describe how a two-
step epigenetic Mendelian randomization approach
can be used to examine the role of DNA methylation
as a mediator of the causal pathway between
modifiable environmental exposures and disease
outcomes.

A two-step epigenetic Mendelian
randomization approach
A two-step epigenetic Mendelian randomization
approach first requires a genetic proxy of the modifi-
able exposure which is related to DNA methylation
(the mediator), and secondly, a genetic proxy of
methylation is used to evaluate the relationship
between this methylation mediator and the disease
outcome or trait (Figure 4). Either step could,

however, be used in isolation to interrogate the
causal relationship between exposure and DNA
methylation or the relationship between methylation
and outcome.

E X Y

U1

U2

Figure 3 Mediation: a modifiable causal risk factor [E] for
disease [Y] exerts its causal effect (at least in part) via the
effect of E on X (the mediator) and through the causal
effect of X on Y. U1 and U2 represent all confounders for
the association of E with Y and X with Y, respectively. U1

and U2 can include different characteristics. In simple
multivariable analyses to test this hypothesis it is tempting
to adjust the association of E with Y for U1 and declare that
this is the total causal effect of E on Y and then to adjust
further for X; any resulting attenuation of the U1 adjusted
association of E with Y following further adjustment for X
is considered to represent the amount of the causal effect
of E on Y that is mediated by X. However, by conditioning
on X a pathway between U2 and E is produced and hence
this association (E with Y) is now confounded by U2. In this
situation X is said to be a collider between and E and U2.115

Furthermore, measurement error in X will bias the
assessment of its mediation. Thus, both U1 and U2 require
separate consideration and this can be achieved in the
two-step epigenetic Mendelian randomization framework

Exposure Phenotype

SNP 1

CpG

Exposure Phenotype

SNP 2

CpG

A Step 1

B Step 2

Figure 4 Two-step epigenetic Mendelian randomization:
applying the principle of Mendelian randomization to
DNA methylation as an intermediate phenotype. Genetic
variants can be used as instrumental variables in a two-step
framework to establish whether DNA methylation is on the
causal pathway between exposure and disease. An overview
of the two-step framework of this approach is shown.
(A) First, an SNP is used to proxy for the environmentally
modifiable exposure of interest and (B) secondly, a different
SNP is used to proxy for DNA methylation levels
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Furthermore, where such genetic determinants of
DNA methylation exist in a heterozygous state, they
may result in allele-specific methylation (ASM),49 i.e.
differences in methylation between two paired al-
leles. Estimates suggest that �20% of heterozygous
SNPs (mainly those located at CpG sites) are asso-
ciated with ASM.104,109 DNA methylation shows re-
gional correlation, although this requires formally
establishing in each experimental- or tissue-specific
setting and should not be an a priori assumption.
It should therefore be feasible to identify cis-SNPs
that correlate with methylation across a specific
region, allowing methylation patterns to be con-
sidered at the haplotype level; a concept promoted
by Bell and colleagues.110 In this way, the use of
genetic variants as a proxy for DNA methylation
levels, in particular the abundance of cis-acting elem-
ents, adds substantially to the feasibility of the two-
step epigenetic Mendelian randomization approach.

Mediation of effects of exposures
on disease outcomes
In epidemiological studies, the identification and
analysis of mediation is often a key focus. For ex-
ample, higher BMI is associated with elevated risk
of CHD, and some of this association may reflect a
causal influence of BMI on blood pressure, which
in turn influences CHD risk. In this situation,
blood pressure would be a partial mediator of the
influence of BMI on CHD, with the important
implication that therapeutically modifying blood
pressure could break this link. Figure 3 illustrates
these processes, which are sometimes referred to as
direct and indirect effects. The figure also highlights
how particular sources of bias and confounding
can occur in such mediation analyses111–114 and the
potential for residual confounding (caused by what
has been referred to as collider bias) and measure-
ment error in the mediator113 to distort interpret-
ations of such data. Below we describe how a two-
step epigenetic Mendelian randomization approach
can be used to examine the role of DNA methylation
as a mediator of the causal pathway between
modifiable environmental exposures and disease
outcomes.

A two-step epigenetic Mendelian
randomization approach
A two-step epigenetic Mendelian randomization
approach first requires a genetic proxy of the modifi-
able exposure which is related to DNA methylation
(the mediator), and secondly, a genetic proxy of
methylation is used to evaluate the relationship
between this methylation mediator and the disease
outcome or trait (Figure 4). Either step could,

however, be used in isolation to interrogate the
causal relationship between exposure and DNA
methylation or the relationship between methylation
and outcome.

E X Y

U1

U2

Figure 3 Mediation: a modifiable causal risk factor [E] for
disease [Y] exerts its causal effect (at least in part) via the
effect of E on X (the mediator) and through the causal
effect of X on Y. U1 and U2 represent all confounders for
the association of E with Y and X with Y, respectively. U1

and U2 can include different characteristics. In simple
multivariable analyses to test this hypothesis it is tempting
to adjust the association of E with Y for U1 and declare that
this is the total causal effect of E on Y and then to adjust
further for X; any resulting attenuation of the U1 adjusted
association of E with Y following further adjustment for X
is considered to represent the amount of the causal effect
of E on Y that is mediated by X. However, by conditioning
on X a pathway between U2 and E is produced and hence
this association (E with Y) is now confounded by U2. In this
situation X is said to be a collider between and E and U2.115

Furthermore, measurement error in X will bias the
assessment of its mediation. Thus, both U1 and U2 require
separate consideration and this can be achieved in the
two-step epigenetic Mendelian randomization framework

Exposure Phenotype

SNP 1

CpG

Exposure Phenotype

SNP 2

CpG

A Step 1

B Step 2

Figure 4 Two-step epigenetic Mendelian randomization:
applying the principle of Mendelian randomization to
DNA methylation as an intermediate phenotype. Genetic
variants can be used as instrumental variables in a two-step
framework to establish whether DNA methylation is on the
causal pathway between exposure and disease. An overview
of the two-step framework of this approach is shown.
(A) First, an SNP is used to proxy for the environmentally
modifiable exposure of interest and (B) secondly, a different
SNP is used to proxy for DNA methylation levels
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Path diagram
Burgess et al. (2015)

effects without interactions either by estimating the total

effect of X on Y assuming the path diagram of Figure 4

and subtracting the direct effect, or (as in this paper) by

multiplying the coefficient for the causal effect of X on Z

by that for the causal effect of Z on Y.

In this work, we use the sem function in Stata 1226 for

SEM analyses, estimating parameters by maximum likeli-

hood. In the conventional IV setting (Figure 1), this is also

known as full information maximum likelihood (FIML).27

Confidence intervals can be constructed based on asymptotic

standard errors. A standard error for the indirect effect can

be calculated from the delta method in Stata using the nlcom

function. A useful feature of SEMs is the availability of tests

for assessing goodness-of-fit of the model.28 Estimation of

parameters and many goodness-of-fit tests rely on the as-

sumption of multivariate normality of the variables.29

Direction of the causal effect

In the set-up of Figure 2, but where it is uncertain whether

Z is a mediator of X or vice versa, it is additionally possible

to test for a causal effect between X and Z in both direc-

tions. IVs for X can be used to estimate the causal effect of

X on Z, and IVs for Z can be used to estimate the causal ef-

fect of Z on X. These estimates can be used to orientate the

direction of causal effect (if any) between the exposure and

mediator. Such an analysis has been named ‘reciprocal

Mendelian randomization’.30

As genetic subgroups of a population defined by an IV

represent subpopulations with long-term average differences

in the exposure of interest,31 the causal effects estimated in

a Mendelian randomization analysis represent long-term re-

lationships, equivalent to a randomized trial where the

intervention is made at conception. As such, changes in the

effects of the exposure and mediator over time and feedback

between the exposure and mediator cannot be addressed by

a conventional Mendelian randomization analysis. This has

consequences for the interpretation of all Mendelian

randomization estimates,32 and particularly in a mediation

setting, where a ‘bidirectional’ causal relationship between

X and Z may reflect an effect of (say) X on Z in early life,

and Z on X in later life. Ideally in mediation analyses, biolo-

gical knowledge should be used to provide a causal ordering

of the exposure, mediator and disease. Where this is not

possible, reciprocal Mendelian randomization approaches

may provide evidence on the direction of causal effects, al-

though all such estimates rely on the assumption that these

effects do not vary in direction over time.

Technical issues

Although the concepts of a direct and indirect effect can be

understood intuitively, precise definitions depend on

exactly how the interventions on the exposure and medi-

ator are performed.11,13 A controlled direct effect is the

effect of increasing the exposure when the mediator is set

to be fixed at a given level. A natural direct effect is the ef-

fect of increasing the exposure when the mediator is left at

the level it would have taken had the exposure been

observed at its reference value. The controlled direct effect

is an appealing quantity as it can be estimated as the result

of an experiment when the levels of the exposure and me-

diator can be separately manipulated. The natural direct

effect requires an estimate of the outcome as if the expos-

ure were intervened on, but the mediator took its value as

if the exposure took a different value. This is intrinsically a

counterfactual quantity, and as such cannot be observed

from any experiment.33 However, the natural direct effect

has a counterpart natural indirect effect: the effect of

increasing the mediator from the level it would take if the

exposure took its reference value to the level it would take

if the exposure were increased, keeping the exposure at its

elevated level. The total effect of the exposure on the out-

come is equal to the sum of the natural direct and indirect

effects.11,13 These definitions are discussed further in

the Web Appendix (available as Supplementary data at IJE

online).

The method of IVs exploits a natural experiment,

enabled by the random distribution of the IV in the popula-

tion. The IV acts to change the variable which it instru-

ments. In the context of mediation, the use of separate IVs

for X and for Z can be viewed as separate experiments to

set the values of X and Z,34 and so using IVs in a non-

parametric setting to estimate the distributions of the ex-

posure and mediator would allow the calculation of a con-

trolled direct effect. However this is equal to the natural

direct effect in the linear setting if the controlled direct ef-

fect is constant for all values of the mediator, that is if there

is no interaction between X and Z in their effect on Y.13 In

contrast, the analogous parallel design approach of Imai

et al., in which two experiments are performed to affect

the values of the exposure and mediator separately, is

Figure 5. Path diagram for estimation of causal direct and indirect ef-

fects of exposure (X) on outcome (Y) with mediator (Z) in the presence

of unmeasured confounding using instrumental variables (GX,GZ) in a

structural equation model (SEM) framework.
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Furthermore, where such genetic determinants of
DNA methylation exist in a heterozygous state, they
may result in allele-specific methylation (ASM),49 i.e.
differences in methylation between two paired al-
leles. Estimates suggest that �20% of heterozygous
SNPs (mainly those located at CpG sites) are asso-
ciated with ASM.104,109 DNA methylation shows re-
gional correlation, although this requires formally
establishing in each experimental- or tissue-specific
setting and should not be an a priori assumption.
It should therefore be feasible to identify cis-SNPs
that correlate with methylation across a specific
region, allowing methylation patterns to be con-
sidered at the haplotype level; a concept promoted
by Bell and colleagues.110 In this way, the use of
genetic variants as a proxy for DNA methylation
levels, in particular the abundance of cis-acting elem-
ents, adds substantially to the feasibility of the two-
step epigenetic Mendelian randomization approach.

Mediation of effects of exposures
on disease outcomes
In epidemiological studies, the identification and
analysis of mediation is often a key focus. For ex-
ample, higher BMI is associated with elevated risk
of CHD, and some of this association may reflect a
causal influence of BMI on blood pressure, which
in turn influences CHD risk. In this situation,
blood pressure would be a partial mediator of the
influence of BMI on CHD, with the important
implication that therapeutically modifying blood
pressure could break this link. Figure 3 illustrates
these processes, which are sometimes referred to as
direct and indirect effects. The figure also highlights
how particular sources of bias and confounding
can occur in such mediation analyses111–114 and the
potential for residual confounding (caused by what
has been referred to as collider bias) and measure-
ment error in the mediator113 to distort interpret-
ations of such data. Below we describe how a two-
step epigenetic Mendelian randomization approach
can be used to examine the role of DNA methylation
as a mediator of the causal pathway between
modifiable environmental exposures and disease
outcomes.

A two-step epigenetic Mendelian
randomization approach
A two-step epigenetic Mendelian randomization
approach first requires a genetic proxy of the modifi-
able exposure which is related to DNA methylation
(the mediator), and secondly, a genetic proxy of
methylation is used to evaluate the relationship
between this methylation mediator and the disease
outcome or trait (Figure 4). Either step could,

however, be used in isolation to interrogate the
causal relationship between exposure and DNA
methylation or the relationship between methylation
and outcome.

E X Y

U1

U2

Figure 3 Mediation: a modifiable causal risk factor [E] for
disease [Y] exerts its causal effect (at least in part) via the
effect of E on X (the mediator) and through the causal
effect of X on Y. U1 and U2 represent all confounders for
the association of E with Y and X with Y, respectively. U1

and U2 can include different characteristics. In simple
multivariable analyses to test this hypothesis it is tempting
to adjust the association of E with Y for U1 and declare that
this is the total causal effect of E on Y and then to adjust
further for X; any resulting attenuation of the U1 adjusted
association of E with Y following further adjustment for X
is considered to represent the amount of the causal effect
of E on Y that is mediated by X. However, by conditioning
on X a pathway between U2 and E is produced and hence
this association (E with Y) is now confounded by U2. In this
situation X is said to be a collider between and E and U2.115

Furthermore, measurement error in X will bias the
assessment of its mediation. Thus, both U1 and U2 require
separate consideration and this can be achieved in the
two-step epigenetic Mendelian randomization framework

Exposure Phenotype

SNP 1

CpG

Exposure Phenotype

SNP 2

CpG

A Step 1

B Step 2

Figure 4 Two-step epigenetic Mendelian randomization:
applying the principle of Mendelian randomization to
DNA methylation as an intermediate phenotype. Genetic
variants can be used as instrumental variables in a two-step
framework to establish whether DNA methylation is on the
causal pathway between exposure and disease. An overview
of the two-step framework of this approach is shown.
(A) First, an SNP is used to proxy for the environmentally
modifiable exposure of interest and (B) secondly, a different
SNP is used to proxy for DNA methylation levels
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effects without interactions either by estimating the total

effect of X on Y assuming the path diagram of Figure 4

and subtracting the direct effect, or (as in this paper) by

multiplying the coefficient for the causal effect of X on Z

by that for the causal effect of Z on Y.

In this work, we use the sem function in Stata 1226 for

SEM analyses, estimating parameters by maximum likeli-

hood. In the conventional IV setting (Figure 1), this is also

known as full information maximum likelihood (FIML).27

Confidence intervals can be constructed based on asymptotic

standard errors. A standard error for the indirect effect can

be calculated from the delta method in Stata using the nlcom

function. A useful feature of SEMs is the availability of tests

for assessing goodness-of-fit of the model.28 Estimation of

parameters and many goodness-of-fit tests rely on the as-

sumption of multivariate normality of the variables.29

Direction of the causal effect

In the set-up of Figure 2, but where it is uncertain whether

Z is a mediator of X or vice versa, it is additionally possible

to test for a causal effect between X and Z in both direc-

tions. IVs for X can be used to estimate the causal effect of

X on Z, and IVs for Z can be used to estimate the causal ef-

fect of Z on X. These estimates can be used to orientate the

direction of causal effect (if any) between the exposure and

mediator. Such an analysis has been named ‘reciprocal

Mendelian randomization’.30

As genetic subgroups of a population defined by an IV

represent subpopulations with long-term average differences

in the exposure of interest,31 the causal effects estimated in

a Mendelian randomization analysis represent long-term re-

lationships, equivalent to a randomized trial where the

intervention is made at conception. As such, changes in the

effects of the exposure and mediator over time and feedback

between the exposure and mediator cannot be addressed by

a conventional Mendelian randomization analysis. This has

consequences for the interpretation of all Mendelian

randomization estimates,32 and particularly in a mediation

setting, where a ‘bidirectional’ causal relationship between

X and Z may reflect an effect of (say) X on Z in early life,

and Z on X in later life. Ideally in mediation analyses, biolo-

gical knowledge should be used to provide a causal ordering

of the exposure, mediator and disease. Where this is not

possible, reciprocal Mendelian randomization approaches

may provide evidence on the direction of causal effects, al-

though all such estimates rely on the assumption that these

effects do not vary in direction over time.

Technical issues

Although the concepts of a direct and indirect effect can be

understood intuitively, precise definitions depend on

exactly how the interventions on the exposure and medi-

ator are performed.11,13 A controlled direct effect is the

effect of increasing the exposure when the mediator is set

to be fixed at a given level. A natural direct effect is the ef-

fect of increasing the exposure when the mediator is left at

the level it would have taken had the exposure been

observed at its reference value. The controlled direct effect

is an appealing quantity as it can be estimated as the result

of an experiment when the levels of the exposure and me-

diator can be separately manipulated. The natural direct

effect requires an estimate of the outcome as if the expos-

ure were intervened on, but the mediator took its value as

if the exposure took a different value. This is intrinsically a

counterfactual quantity, and as such cannot be observed

from any experiment.33 However, the natural direct effect

has a counterpart natural indirect effect: the effect of

increasing the mediator from the level it would take if the

exposure took its reference value to the level it would take

if the exposure were increased, keeping the exposure at its

elevated level. The total effect of the exposure on the out-

come is equal to the sum of the natural direct and indirect

effects.11,13 These definitions are discussed further in

the Web Appendix (available as Supplementary data at IJE

online).

The method of IVs exploits a natural experiment,

enabled by the random distribution of the IV in the popula-

tion. The IV acts to change the variable which it instru-

ments. In the context of mediation, the use of separate IVs

for X and for Z can be viewed as separate experiments to

set the values of X and Z,34 and so using IVs in a non-

parametric setting to estimate the distributions of the ex-

posure and mediator would allow the calculation of a con-

trolled direct effect. However this is equal to the natural

direct effect in the linear setting if the controlled direct ef-

fect is constant for all values of the mediator, that is if there

is no interaction between X and Z in their effect on Y.13 In

contrast, the analogous parallel design approach of Imai

et al., in which two experiments are performed to affect

the values of the exposure and mediator separately, is

Figure 5. Path diagram for estimation of causal direct and indirect ef-

fects of exposure (X) on outcome (Y) with mediator (Z) in the presence

of unmeasured confounding using instrumental variables (GX,GZ) in a

structural equation model (SEM) framework.
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Y = β0 + β1X + β2Z + ε1,

X = α0 + α1G1 + ε2,

Z = γ0 + γ1G2 + γ2X + ε3

ε1
ε2
ε3

 ∼ MVN(0,Σ)
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Mediation model:
single study fit in OpenMx I

A =


0 β1 β2 0 0
0 0 0 α1 0
0 γ1 0 0 γ2
0 0 0 0 0
0 0 0 0 0

 , S =


σ2
ε1

σε1ε2 σε1ε3 0 0
σε1ε2 σ2

ε2
σε1ε3 0 0

σε1ε3 σε2ε3 σ2
ε3

0 0
0 0 0 σ2

G1 0
0 0 0 0 σ2

G2



M =


β0
α0
γ0

G1
G2

 , F = I(5)

• R2
X = 0.3, R2

Z ,G2 = 0.16
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Mediation model:
single study fit in OpenMx II

> mxTryHard(mediation.model)

> summary(mediation.fit2)

...

free parameters:

name matrix row col Estimate Std.Error

1 beta1 A1 1 2 1.0109453 0.018136100

2 gamma1 A1 3 2 1.0209632 0.015113946

3 beta2 A1 1 3 1.0019530 0.009864446

4 alpha1 A1 2 4 1.0155065 0.015515166

5 gamma2 A1 3 5 1.0259136 0.013303523

6 errory S1 1 1 0.9793607 0.027248906

7 errorxy S1 1 2 0.7425581 0.020213100

8 errorx S1 2 2 1.0150569 0.014356109

9 erroryz S1 1 3 0.3855889 0.021258490

10 errorxz S1 2 3 0.4930445 0.018988609

11 errorz S1 3 3 0.9931549 0.020481237

12 varg1 S1 4 4 0.4218099 0.005965607

13 varg2 S1 5 5 0.4260051 0.006024941

14 beta0 M1 1 y 0.9849710 0.030509203

15 alpha0 M1 1 x 1.0037412 0.013839038

16 gamma0 M1 1 z 0.9588452 0.027641798

17 meang1 M1 1 g1 0.6115000 0.006494691

18 meang2 M1 1 g2 0.6088000 0.006526907

...
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Mediation model:
meta-analysis – stage 1 covs

• Simulate 5 studies from same model (N = 1000)

> fixed1 <- tssem1(scovs, sampsizes, method="FEM", cor.analysis=FALSE)

> summary(fixed1)

...

Coefficients:

Estimate Std.Error z value Pr(>|z|)

S[1,1] 14.0847613 0.2818307 49.9760 <2e-16 ***

S[1,2] 4.1042813 0.0861058 47.6655 <2e-16 ***

S[1,3] 7.0914238 0.1465197 48.3991 <2e-16 ***

S[1,4] 0.8598434 0.0365179 23.5458 <2e-16 ***

S[1,5] 0.6208533 0.0429352 14.4602 <2e-16 ***

S[2,2] 1.4335084 0.0286838 49.9762 <2e-16 ***

S[2,3] 1.9145515 0.0435214 43.9911 <2e-16 ***

S[2,4] 0.4252767 0.0125247 33.9550 <2e-16 ***

S[2,5] -0.0094234 0.0134083 -0.7028 0.4822

S[3,3] 4.0431484 0.0809034 49.9750 <2e-16 ***

S[3,4] 0.4272514 0.0194131 22.0084 <2e-16 ***

S[3,5] 0.6332306 0.0242343 26.1295 <2e-16 ***

S[4,4] 0.4204346 0.0084129 49.9749 <2e-16 ***

S[4,5] -0.0087257 0.0072621 -1.2015 0.2295

S[5,5] 0.6263648 0.0125336 49.9748 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Mediation model:
meta-analysis – stage 2 covs

> fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,

+ diag.constraints=TRUE, intervals.type="LB")

> summary(fixed2)

...

95% confidence intervals: Likelihood-based statistic

Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)

beta1 1.02087 NA 0.99777 1.04377 NA NA

beta2 0.99634 NA 0.98214 1.01051 NA NA

alpha1 1.01150 NA 0.99349 1.02951 NA NA

gamma1 1.02570 NA 1.00810 1.04302 NA NA

gamma2 1.02683 NA 1.00763 1.04595 NA NA

ey 0.97624 NA 0.92966 1.02415 NA NA

exy 0.73331 NA 0.69452 0.77253 NA NA

ex 1.00333 NA 0.96390 1.04269 NA NA

eyz 0.35686 NA 0.32107 0.39343 NA NA

exz 0.45387 NA 0.41927 0.48883 NA NA

ez 0.96391 NA 0.92302 1.00517 NA NA

23 / 27



Conclusion

• MASEM (inc. TSSEM) implemented in metaSEM R package
• Stage 1: estimate pooled correlation/covariance matrix
• Stage 2: SEM (ADF weighted by inverse Stage 1 var-cov)
• TSSEM can be used for MR analyses and complex mediation

models
• sem (Stata) can’t fit Stage 2
• Using correlations returns estimates for standardized

variables
• Bayesian approach of Prevost et al. (2007) (Fisher’s z)
• MR using path analysis could help uptake by researchers in

psychology
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