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Aim

Combine two strands of literature:

• Structural mean models [Biostatistics]

• Generalised Method of Moments estimation [Econometrics]

Rationale:

• Concepts such as G-estimation intimidating

• Estimation with multiple instruments

• Straightforward implementation in Stata and R
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Introduction to example
• Copenhagen General Population study 

– N=55,523

• Instruments: 
– FTO (rs9939609) chr16, MC4R (rs17782313) chr18 genotypes

– Associated with obesity in GWAS (0.4, 0.2 BMI units). Frayling 2007, Loos 2008

• Exposure:
– Overweight (body mass index BMI [weight/height2] >25)

• Outcome: 
– Hypertension (high blood pressure [SBP>140mmHg, or DBP>90mmHg, or 

taking anti-hypertensives])

HypertensionOverweightFTO, MC4R genotypes

Confounders



No 
Hypertension

Hypertension Total

Not 
Overweight

10,066
42%

13,909
58%

23,975

Overweight 6,906
22%

24,642
78%

31,548

Total 16,972
31%

38,551
69%

55,523
χ2 P<0.001
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Overweight Hypertension

P<0.001
R2=0.002

P=0.007

Risk ratio 1.35 (1.32, 1.37)

Instrument-exposure

Instrument-outcome



Causal parameters and potential 
outcomes

• SMMs defined in terms of potential outcomes
Hernan & Robins 2006

• X: exposure/treatment, Y: outcome, Z: IV

• Y(X=1)  outcome subject would experience if 
they were given treatment/exposure under 
intervention



Potential outcomes for an individual

Y(X=1) Y(X=0)



E[Y(X=1)] E[Y(X=0)]Average treatment effect   =

…

Potential outcomes for whole study

binary outcome: causal risk difference

Causal risk ratio  = E[Y(X=1)]     /     E[Y(X=0)]

Causal odds ratio  =

… …

odds[Y(X=1)]  /     odds[Y(X=0)]

Recent 
discussion of 
G-estimation: 
Snowden et 
al., AJE, 2011



What we observe

SMMs identify effect of treatment of treated
… …

…

…

E[Y(1)|X=1]     – E[Y(0)|X=1]



Multiplicative SMM

Conditional mean independence (CMI) from IV assumptions:

θ0: log causal risk ratio

No effect modification by Z (NEM):

…so far … model non-identified: 2 parameters, 1 equation



Moment conditions

Multi-valued instrument/multiple instruments

If no E[Y(0)] – need to centre the instruments; 
Vansteelandt & Goetghebeur, JRSS B, 2003

Over-identified:
3 moment conditions, 
2 parameters …
… need GMM

Exactly identified:
2 moment conditions,
2 parameters

E[]=0 since Z independent of Y given X: exclusion restriction 



What is GMM?
Designed to estimate over-identified models
GMM minimises quadratic form wrt parameters to be estimated

W-1 affects efficiency not consistency: one step/two step GMM
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• Single instrument – exactly identified: min(Q)=0
• Multiple instruments – over identified: min(Q) should be close enough to 0 
as given by Hansen over-id test statistic,  Q ~ X2

m-p when moments valid
• Not rejecting the over-id test doesn’t mean the IV assumptions hold

Estimate

min(Q)

Over-identification test

Χ2
2,0.95=5.99

Profiling over quadratic form (Q) for a single parameter



Combining multiple instruments

GMM satisfies

How does GMM treat multiple instruments?



Two step GMM

Two-step GMM is efficient because it’s Vcov matrix is the smallest
(Chamberlain 1987)

Two step:

One step:

Step 1: Estimate parameters and W
Step 2: repeat optimization starting from step 1 estimate of W



MSMM implementation in Stata

gmm command (Stata version 11)

Moment condition

Over-identification test

Vector of 1’s automatically 
included

gmm (y*exp(-x*{theta}) - {ey0}), instruments(z1 z2 z3)

lincom [theta]:_cons, eform Causal risk ratio

estat overid



MSMM Stata output 1

E[Y(0)] = 0.58 (0.50, 0.65)

Two step GMM



MSMM Stata output 2

Causal risk ratio = 1.36 (1.08, 1.72)

Df = 4 IVs – 2 parameters
2.36125 = 0.00004253×55523



Observational and IV estimate in 
example

MSMM

Gamma (log link)

1 1.2 1.4 1.6 1.8
Causal risk ratio (log scale)

1.35 (1.33, 1.36)

1.36 (1.08, 1.72)
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αAll = λ1α1,0 + λ2α2,1 + λ3α3,2

Local risk ratios
•Identification depends on NEM … what happens if it doesn’t hold?
•Alternative assumption of monotonicity: X(Zk) ≥ X(Zk-1)
•Local Average Treatment Effect (LATE): effect among those whose 
exposures are changed (upwardly) by changing (counterfactually) the IV 
from Zk-1 to Zk

Linear IV: Imbens & Angrist 1994

MSMM: We show a similar result holds for MSMM (X, Y: binary)

…weighted average of risk ratios
… rather than log risk ratios!

LATEs
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0,1 1,2 2,3 All
Instruments used in estimation

τ=10%
N=34,896
R2=0.0001

τ=81%
N=40,552
R2=0.0014

Local risk ratios in the example

Check:  (0.10 × 2.21)  +  (0.81 × 1.11)  +  (0.09 × 2.69)  =  1.36

N=55,523
R2=0.0022

τ=9%
N=20,627
R2=0.0004



MSMM and MGMM

MGMM: Mullahy 1997 – exponential mean model with multiplicative 
residual

Discussed by Windmeijer 1997, 2002, 2006

E[Z{Y – exp(Xθ)}] = 0 Poisson regression

Additive residual:

Multiplicative residual:



Clarke & Windmeijer 2010 ; Didelez, et al. 2010; Palmer et al., AJE, 2011
MGMM (one step GMM): ivpois for Stata (Nichols 2007)

Lost on a 
train!

Proof MSMM = MGMM



Logistic SMM
• Implement joint estimation approach within GMM framework

• Vansteelandt & Goetghebeur (2003), Vansteelandt & Bowden (2010)

Two-stage estimation Joint estimation

Association model: 
predict Y given X, Z

Causal model
(MSMM/ASMM causal model only)

Estimate association model and 
causal model together

Stage 1

Stage 2

Need to correct SEs somehow SEs automatically correct
Gourieux 1996, Tan 2010



LSMM implementation in Stata

Association model: predict Y given X, Z

Causal model – incorrect SEs!

Joint estimation – correct SEs!

Two step estimation



LSMM Stata output

Association model

predicted values of outcome (on logit scale here)



Causal model

Incorrect SEs 



Joint estimation

Corrected SEs: causal model SEs ×10



Causal odds ratio = 2.87 (1.25, 6.55)

Degrees of freedom:
AM: exactly identified
CM: 4 moments – 2 pars



Observational and IV estimate in 
example

LSMM

Logistic

1 2 3 4 5 6 7 8
Causal odds ratio (log scale)

2.87 (1.25, 6.55)

2.58 (2.49, 2.68)



Summary

• Estimate SMMs within GMM framework

• GMM optimal combination of multiple 
instruments

• Two-step GMM is efficient

• Joint estimation for LSMM

• Hansen over-identification test
– Joint validity of multiple instruments

– Can help detect violations in NEM & CMI

• Straightforward implementation in Stata and R
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