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Control function estimators (CFEs)

I Similar to TSLS

I Additionally include first stage residuals in second stage model

I With X phenotype, Y outcome, Z instrument;

X = α0 + α1Z + u

Y = β0 + β1X + β2û or some GLM

I Linear 2nd stage: β̂1 = β̂TSLS
I Linear 2nd stage: test of β̂2 = 0 is an endogeneity test
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Previous work (Palmer et al., 2008) I
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Previous work (Palmer et al., 2008) II

Instrumental
Variable (Z)

Exposure (X) Outcome (Y)

Confounders (U)

I Binary outcome
I 3 estimators

1. Direct: logistic outcome phenotype

2. Standard IV: logistic outcome predicted

3. Adjusted IV: logistic outcome predicted residuals

I Assessed properties with simulation study
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Previous work (Palmer et al., 2008) III: simulation setup

I gen double g = rbinomial(2, 0.3) // hwe, risk allele 30%

I gen double u = rnormal()

I gen double x = rnormal(0 + z + α2u, 1)

I gen double p = invlogit(log(0.05/0.95) + β1x + β2u)

I gen byte y = rbinomial(1, p)

I Vary: α2 = (0, 3), β2 = (0, 3)
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Previous work (Palmer et al., 2008) III: estimates
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I Conditional parameter: set at β1 = 1
I Marginal parameters: dashed lines
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Previous work (Palmer et al., 2008) IV: estimates

I Adjusted IV (logistic control function estimator) estimates
marginal parameter

Conditional: β1

Marginal: β1 ×
1√

1 + c2V

c = 16
√
3

15π
V : variance of the covariates over which marginal estimates are
averaged.
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Previous work (Palmer et al., 2008) IV: coverage
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Previous work (Palmer et al., 2008) IV: coverage
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Previous work (Palmer et al., 2008) IV: type I error
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TSLS standard errors I

I Running TSLS manually we have:

1. X = α0 + α1Z + u
2. Y = β0 + β1X̂ + ε

I The second stage standard errors are corrected to account for
use of X̂ in second stage instead of X (which causal model is
formulated in terms of)

I This affects estimate of variance of the residuals

I Define projection matrix, PZ = Z (Z ′Z )−1Z ′, so X̂ = PZX ,
then

β̂2SLS = (X ′PZX )−1X ′PZY
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TSLS standard errors II

I Uncorrected manual 2nd stage SEs are:

var(β̂2nd) = s2(X̂ ′X̂ )−1

with s2 = (Y − X̂ β̂IV)2/(n − k).

I Corrected 2nd stage SEs are (assuming homoskedasticity):

var(β2SLS) = σ2(X ′PZX )−1

with σ2 = (Y − X β̂IV)2/n.
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Newey (1987) standard errors for Probit CFE I

I Binary Y

X = ZΠ + vi

Y = X δ + ui

(ui , vi ) ∼ MVN(0,Σ)

I Estimation: maximum likelihood and twostep.

Two-step estimation:

1. Regress X on Z and estimate the residuals (v̂i ).

2. Probit regression of Y on X and v̂i

I Stata implementations:
I probitiv (Gelbach, 1997) – unadjusted SEs
I ivprob (Harkness) – Newey SEs
I ivprobit (Stata) – Newey SEs
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Newey (1987) standard errors for Probit CFE II

I Newey, Efficient estimation of limited dependent variable
models, Journal of Econometrics, 1987

I 3 key equations:

δ̂ = (D̂Ω̂−1D̂)−1D̂ ′Ω̂−1α̃ (Newey Eq. 5.6)

var(δ̂) = (D̂Ω̂−1D̂)−1

Ω̂ = J−1αα + (λ− β)′Σ22(λ− β)Q−1 (Newey Eq. 5.4)

I How to obtain the elements of Ω̂?
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Newey (1987) standard errors for Probit CFE III

Stata [R] Reference Manual page 921 (ivprobit: Methods and
formulas):

1. Regress X on Z to compile D̂ (I (k) with D[,1] coefs from this)
2. Probit regression of Y on Z and v̂i

I ã :=coefficients on Z and constant
I J−1

αα is var-covar matrix of these coefficients
I λ̂ = coefficient on v̂i .

3. Probit CFE: Probit regression of Y on X and v̂i
I coefficient on X is β̂

4. Generate X (λ̂− β̂)
I regress X (λ̂− β̂) on Z
I covariance matrix is estimate of term after + in Ω̂
I add to J−1

αα giving Ω̂

I Approximation for logistic CFE: replace the 2 Probit
regressions in (2) and (3) with logistic regressions (and do the
same for other GLMs at second stage).
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Logistic CFE: coverage simulation results
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Logistic CFE: coverage simulation results
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Logistic CFE: type I error simulation results
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Application to linear CFE
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Application to linear CFE
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Application to linear CFE
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Real data example I

I 17057 participants from 6 cohorts of European ancestry

I exposure: body-mass index

I instrument: externally weighted allele score

I continuous outcome: systolic blood pressure

I binary outcome: diabetes status
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Real data example II

Estimator Ancilliary statistics Estimate (95% CI)

Direct 0.76 (0.70, 0.82)
TSLS (F=119, R2=0.007) SE=0.374 0.36 (-0.37, 1.10)
Linear CFE (unadjusted) SE=0.372 0.36 (-0.37, 1.09)
Linear CFE (Newey-type) SE=0.374 0.36 (-0.37, 1.10)

Table: Estimates of the causal effect of a one unit increase in body mass
index on systolic blood pressure (mmHg) (All N=17 057).

Newey-type SE 0.5% larger.
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Real data example III

Estimator Ancilliary statistics Odds ratio (95% CI)

Direct 1.14 (1.13, 1.15)
Standard IV (F=119 R2=0.007) SE=0.056, z = 4.96 1.32 (1.19, 1.48)
Logistic CFE (unadjusted) SE=0.058, z = 4.79 1.32 (1.18, 1.48)
Logistic CFE (Newey-type) SE=0.059, z = 4.71 1.32 (1.17, 1.48)
Logistic SMM SE=. 1.41 (.,.)
Probit CFE z = 4.74 0.15 (0.089, 0.214)

Table: Estimates of the causal odds ratios for diabetes for a one unit
increase in body mass index (All N=17 057, SEs for logistic SMM did not
converge).

Newey-type SE 2% larger.
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Summary

I CFEs estimate marginal parameters

I Manual TSLS SEs require correction

I SEs of the manual two-step Probit CFE can be corrected
(Newey, 1987)

I Logistic and linear CFE SEs can be corrected using this
method – correct coverage, type I error (possibly other GLMs
at second stage too)

I Probit and logistic CFE z-statistics slightly different (could
correct logistic CFE SE using the Probit z-statistic but then
matrix formula for estimate would be slightly incorrect)

I Doesn’t overcome weak instrument problem (Davies et al.,
2015).
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