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Control function estimators (CFEs)

Similar to TSLS

Additionally include first stage residuals in second stage model
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With X phenotype, Y outcome, Z instrument;

X=ag+o1Z+u
Y = By + $1X + B0  or some GLM

Linear 2" stage: 31 = Brsis

v

Linear 2" stage: test of Bg = 0 is an endogeneity test

v
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Previous work (Palmer et al., 2008) |
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Background Mendelian randomization uses a carefully selected gene as an
instrumental-variable (IV) to test or estimate an association
between a phenotype and a disease. Classical IV analysis assumes
linear relationships between the variables, but disease status is
often binary and modelled by a logistic regression. When the
linearity assumption between the variables does not hold the IV
estimates will be biased. The extent of this bias in the phenotype-
disease log odds ratio of a Mendelian randomization study is
investigated.

Methods Three estimators termed direct, standard IV and adjusted IV, of the
phenotype-disease log odds ratio are compared through a simula-
tion study which incorporates unmeasured confounding. The
simulations are verified using formulae relating marginal and
conditional estimates given in the Appendix.

Results The simulations show that the direct estimator is biased by unmea-
sured confounding factors and the standard IV estimator is atten-
uated towards the null. Under most circumstances the adjusted 1V
estimator has the smallest bias, although it has inflated type I error
when the unmeasured confounders have a large effect.

Conclusions In a Mendelian randomization study with a binary disease outcome
the bias associated with estimating the phenotype-disease log odds
ratio may be of practical importance and so estimates should be
subject to a sensitivity analysis against different amounts of hypo-
thesized confounding.

Keywords  Instrumental-variable analysis, Mendelian randomization, bias,
unobserved confounding




Previous work (Palmer et al., 2008) I

Confounders (U)

RN

Instrumental
—_—_—
Variable (2) Exposure (X) —ﬁ Outcome (Y)

» Binary outcome
» 3 estimators

1. Direct: logistic outcome phenotype
2. Standard IV: logistic outcome predicted
3. Adjusted IV: logistic outcome predicted residuals

> Assessed properties with simulation study
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Previous work (Palmer et al., 2008) Ill: simulation setup
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gen double g = rbinomial(2, 0.3) // hwe, risk allele 30%
gen double u = rnormal()

gen double x = rnormal(0 + z + apu, 1)

gen double p = invlogit(log(0.05/0.95) + fS1x + Bau)
gen byte y = rbinomial(1, p)

Vary: ap; = (0,3), 52 =(0,3)
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Previous work (Palmer et al., 2008) Ill: estimates

Estimates of B,
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» Conditional parameter: set at §; =1
> Marginal parameters: dashed lines
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Previous work (Palmer et al., 2008) IV: estimates

» Adjusted IV (logistic control function estimator) estimates
marginal parameter

Conditional: 31

Marginal: 81 X

1
V142V

c— 16V3
15w . . . .
V' variance of the covariates over which marginal estimates are

averaged.

~
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Previous work (Palmer et al., 2008) IV: coverage
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Coverage wrt conditional parameter — very low



Previous work (Palmer et al., 2008) IV: coverage
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Previous work (Palmer et al., 2008) IV: type | error
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TSLS standard errors |

» Running TSLS manually we have:
L X=ag+aZ+u
2. Y250+B1X+6

» The second stage standard errors are corrected to account for
use of X in second stage instead of X (which causal model is
formulated in terms of)

» This affects estimate of variance of the residuals

» Define projection matrix, Pz = Z(Z'Z)~1Z’, so X = PsX,
then

Basts = (X'PzX)"1X'PzY
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TSLS standard errors |l

» Uncorrected manual 2nd stage SEs are:

var(Bang) = s2(X'X)
with s2 = (Y — XBw)?/(n — k).

» Corrected 2nd stage SEs are (assuming homoskedasticity):

var(Bass) = 0*(X'PzX) ™!
with 02 = (Y — XBw)?/n.
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Newey (1987) standard errors for Probit CFE |

» Binary Y

X =27+ Vi
Y = X5+ u;
(u,-, V,') ~ MVN(O, Z)

» Estimation: maximum likelihood and twostep.

Two-step estimation:
1. Regress X on Z and estimate the residuals (v;).

2. Probit regression of Y on X and v;

» Stata implementations:
» probitiv (Gelbach, 1997) — unadjusted SEs
» ivprob (Harkness) — Newey SEs
» ivprobit (Stata) — Newey SEs
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Newey (1987) standard errors for Probit CFE |l

» Newey, Efficient estimation of limited dependent variable
models, Journal of Econometrics, 1987

» 3 key equations:
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» How to obtain the elements of 27
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Newey (1987) standard errors for Probit CFE I

Stata [R] Reference Manual page 921 (ivprobit: Methods and
formulas):
1. Regress X on Z to compile D (/(k) with D[,1] coefs from this)
2. Probit regression of Y on Z and v;

» 3 :=coefficients on Z and constant
» J.1is var-covar matrix of these coefficients

» \ = coefficient on V.
3. Probit CFE: Probit regression of Y on X and v;
» coefficient on X is 3
4. Generate X(\ — 3)
> regress X(A—3) on Z
> covariance matrix is estimate of term after + in Q
» add to J;! giving Q

(03

» Approximation for logistic CFE: replace the 2 Probit
regressions in (2) and (3) with logistic regressions (and do the
same for other GLMs at second stage).
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Logistic CFE: coverage simulation results

Coverage
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Coverage wrt conditional parameter
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Logistic CFE: coverage simulation results
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Logistic CFE: type | error simulation results
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Application to linear CFE
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Application to linear CFE
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Application to linear CFE

Type | error
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Graphs by a,

Type | error compared to TSLS and uncorrected linear CFE SEs
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Real data example |

» 17057 participants from 6 cohorts of European ancestry
> exposure: body-mass index

> instrument: externally weighted allele score

» continuous outcome: systolic blood pressure

> binary outcome: diabetes status
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Real data example Il

Estimator

Ancilliary statistics

Estimate (95% Cl)

Direct

TSLS (F=119, R?>=0.007)
Linear CFE (unadjusted)
Linear CFE (Newey-type)

SE=0.374
SE=0.372
SE=0.374

0.76 (0.70, 0.82)
0.36 (-0.37, 1.10)
0.36 (-0.37, 1.09)
0.36 (-0.37, 1.10)

Table: Estimates of the causal effect of a one unit increase in body mass
index on systolic blood pressure (mmHg) (All N=17057).

Newey-type SE 0.5% larger.
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Real data example Il

Estimator Ancilliary statistics ~ Odds ratio (95% CI)
Direct 1.14 (1.13, 1.15)
Standard IV (F=119 R2=0.007) SE=0.056, z=4.96  1.32 (1.19, 1.48)
Logistic CFE (unadjusted) SE=0.058, z = 4.79 1.32 (1.18, 1.48)
Logistic CFE (Newey-type) SE=0.059, z =4.71 1.32 (1.17, 1.48)
Logistic SMM SE=. 1.41(.,.)
Probit CFE z=4.74 0.15 (0.089, 0.214)

Table: Estimates of the causal odds ratios for diabetes for a one unit
increase in body mass index (All N=17 057, SEs for logistic SMM did not
converge).

Newey-type SE 2% larger.
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Summary

» CFEs estimate marginal parameters
» Manual TSLS SEs require correction

» SEs of the manual two-step Probit CFE can be corrected
(Newey, 1987)

» Logistic and linear CFE SEs can be corrected using this
method — correct coverage, type | error (possibly other GLMs
at second stage too)

» Probit and logistic CFE z-statistics slightly different (could
correct logistic CFE SE using the Probit z-statistic but then
matrix formula for estimate would be slightly incorrect)

» Doesn't overcome weak instrument problem (Davies et al.,
2015).
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