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Introduction
We present our bpbounds R package and Shiny web
app for the nonparametric bounds for the average
causal e�ect (ACE) due to Balke and Pearl (Palmer et
al. 2018).
This is an R implementation of our Stata programs
(Palmer et al. 2011).
The package can be installed from CRAN as follows:

Code development is on the GitHub repository:
https://github.com/remlapmot/bpbounds

Methods
Under the instrumental variable assumptions alone,
without additional parametric model assumptions,
the ACE is not identified.
Balke and Pearl (1997) showed it is possible to derive
bounds for the ACE.
The bounds have the following interpretation:

There is some joint distribution of the unobserved
confounders and the observed variables that yields
a true ACE as small as the lower bound, while
another choice produces an ACE as large as the
upper bounds (the bounds are tight).

There are at least two ways to implement the Balke-
Pearl bounds:

i. using conditional probabilities calculated from
contingency tables;

ii. the polytope method due to Dawid (2003).

We implemented the polytope method since it is
generalisable for identified IV models with

exposures, outcomes, and instruments with more
than 2 categories.
Currently, we allow for a binary or 3 category
instrument, and binary exposure and outcome.

Example Mendelian
randomization analysis

We extract an example from Meleady et al. (2003).
We have a 3 category instrument and binary
exposure and outcome.
We use the 677CT polymorphism (rs1801133) in the
MTHFR gene, involved in folate metabolism, as an
instrumental variable to investigate the causal e�ect
of homocysteine on the risk of cardiovascular
disease.
The code is shown on the right.
The ACE lies between a risk di�erence of -9% to 74%
increase in absolute risk.
Additionally, we see that the monotonicity inequality
is not satisfied.

Conclusion
Use of bounds in instrumental variable analyses is
regaining interest (Swanson et al. 2018; Labrecque
and Swanson 2018).
The empirical experience that the bounds are often
wide is not a bad property of the method, it is a
property of the typical data: Mendelian
randomization data simply often are uninformative
in that sense due to weak instrumental variables.
We recommend using the bounds when the variables
are genuinely discrete, but not when the exposure is
genuinely continuous (Sheehan and Didelez 2019).
Our R package and app provide a convenient
interface to the bounds.
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Extra Figures & Tables

Figure 1: Shiny app https://remlapmot.shinyapps.io/bpbounds

Figure 2: Screenshot of our Shiny app.

Figure 3: Package website https://remlapmot.github.io/bpbounds/

install.packages("bpbounds")

library(bpbounds)
mt3 <- c(.83, .05, .11, .01, 
         .88, .06, .05, .01, 
         .72, .05, .20, .03)
p3 <- array(mt3, dim = c(2, 2, 3),
           dimnames = list(x = c(0, 1),
                           y = c(0, 1),
                           z = c(0, 1, 2)))
bpres3 <- bpbounds(as.table(p3))
summary(bpres3)
## 

## Data:                    trivariate

## Instrument categories:   3

## 

## Instrumental inequality: TRUE 

##  Causal parameter Lower bound Upper bound

##               ACE       -0.09     0.74000

##      P(Y|do(X=0))        0.06     0.12000

##      P(Y|do(X=1))        0.03     0.80000

##               CRR        0.25    13.33333

## 

## Monotonicity inequality: FALSE

What range could your causal effect
lie between if the instrumental
variable assumptions held?

Find out with our bpbounds R package
and Shiny app!


