Meta-analysis of Mendelian randomization studies

Tom Palmer, John Thompson and Martin Tobin

Department of Health Sciences, University of Leicester, UK

> ISCB 28, 1 August 2007

Outline

- 2 Concepts in the meta-analysis model
- 3 Description of the example and the meta-analysis model
- 4 An extension to the meta-analysis model
- 5 Summary and discussion

• Dates back to [Katan, 1986], recent revival [Katan, 2004]

- Dates back to [Katan, 1986], recent revival [Katan, 2004]
 - Association between biological phenotype and a disease

- Dates back to [Katan, 1986], recent revival [Katan, 2004]
 - Association between biological phenotype and a disease
 - Problems of confounding and reverse causation

- Dates back to [Katan, 1986], recent revival [Katan, 2004]
 - Association between biological phenotype and a disease
 - Problems of confounding and reverse causation
- Mendel's 2nd law: individual randomized to a genotype at conception

- Dates back to [Katan, 1986], recent revival [Katan, 2004]
 - Association between biological phenotype and a disease
 - Problems of confounding and reverse causation
- Mendel's 2nd law: individual randomized to a genotype at conception
 - Phenotype on pathway between gene and disease

 $\begin{array}{l} \theta \text{: Gene-Disease log odds-ratio, } \delta \text{: difference in mean phenotypes,} \\ \eta \text{: Phenotype-Disease log odds-ratio} \end{array}$

- θ : Gene-Disease log odds-ratio, δ : difference in mean phenotypes, η : Phenotype-Disease log odds-ratio
- Instrumental-variable (IV) methods for continuous outcome measures

- θ : Gene-Disease log odds-ratio, δ : difference in mean phenotypes, η : Phenotype-Disease log odds-ratio
- Instrumental-variable (IV) methods for continuous outcome measures
 - IV estimates using a binary disease outcome are approximations

- θ : Gene-Disease log odds-ratio, δ : difference in mean phenotypes, η : Phenotype-Disease log odds-ratio
- Instrumental-variable (IV) methods for continuous outcome measures
 - IV estimates using a binary disease outcome are approximations
 - Ratio of coefficients approach,

- θ : Gene-Disease log odds-ratio, δ : difference in mean phenotypes, η : Phenotype-Disease log odds-ratio
- Instrumental-variable (IV) methods for continuous outcome measures
 - IV estimates using a binary disease outcome are approximations

• Ratio of coefficients approach,

$$\eta_{[k]} \approx \frac{k\theta}{\delta}$$

Information from a case-control study

• A biallellic polymorphism (g,G); g: common allele, G: risk allele; 3 genotypes: gg, Gg, GG; (j = 1,2,3)

Information from a case-control study

• A biallellic polymorphism (g,G); g: common allele, G: risk allele; 3 genotypes: gg, Gg, GG; (j = 1,2,3)

> • d = 0,1: control/case, y_{dj} : observed cases and controls,

Information from a case-control study

A biallellic polymorphism (g,G); g: common allele, G: risk allele;
3 genotypes: gg, Gg, GG; (j = 1,2,3)

• d = 0,1: control/case, y_{dj} : observed cases and controls,

	gg	Gg	GG
Controls	<i>Y</i> 01	<i>Y</i> 02	<i>У</i> 03
Cases	<i>Y</i> 11	<i>Y</i> 12	<i>Y</i> 13
log odds-ratios		θ_2	θ_3
Mean phenotype levels (controls)	μ_1	μ_2	μ_{3}
difference in mean phenotypes		δ_2	δ_3

Description of the example

• Mann et al. The Journal of Clinical Investigation, (2001); phenotype - bone mineral denisty (BMD), disease - osteoporotic fracture, gene - *COL1A1* codes for collagen

Description of the example

 Mann et al. The Journal of Clinical Investigation, (2001); phenotype - bone mineral denisty (BMD), disease - osteoporotic fracture, gene - COL1A1 codes for collagen

Tom Palmer (Leicester)

Meta-analysis of MR studies

• Meta-analysis model for Mendelian randomization studies for a single genotype comparison [Thompson et al., 2005].

∃ ► < ∃ ►</p>

< <>></>

- Meta-analysis model for Mendelian randomization studies for a single genotype comparison [Thompson et al., 2005].
 - Gg vs gg: Bigger sample size, smaller difference in disease risk; GG vs gg: Smaller sample size, bigger difference in disease risk

- Meta-analysis model for Mendelian randomization studies for a single genotype comparison [Thompson et al., 2005].
 - Gg vs gg: Bigger sample size, smaller difference in disease risk; GG vs gg: Smaller sample size, bigger difference in disease risk
 - Inference at the population level; marginal distribution: combine within and between study distributions

- Meta-analysis model for Mendelian randomization studies for a single genotype comparison [Thompson et al., 2005].
 - Gg vs gg: Bigger sample size, smaller difference in disease risk; GG vs gg: Smaller sample size, bigger difference in disease risk
 - Inference at the population level; marginal distribution: combine within and between study distributions

$$\begin{bmatrix} \theta_{2i} \\ \delta_{2i} \\ \theta_{3i} \\ \delta_{3i} \end{bmatrix} \sim \mathsf{MVN} \left(\begin{bmatrix} \eta \delta_2 \\ \delta_2 \\ \eta \delta_3 \\ \delta_3 \end{bmatrix}, \mathbf{V}_i + \mathbf{B} \right)$$

• Results of the meta-analysis model

3

<ロ> (日) (日) (日) (日) (日)

Method of estimation	<i>OR</i> _{pd,0.05}	95% C.I.	
Gg vs gg	0.57	0.42	0.77
GG vs gg	0.40	0.28	0.57
Combined	0.50	0.39	0.62

• Results of the meta-analysis model

3

<ロ> (日) (日) (日) (日) (日)

Method of estimation	<i>OR</i> _{pd,0.05}	95% C.I.	
Gg vs gg	0.57	0.42	0.77
GG vs gg	0.40	0.28	0.57
Combined	0.50	0.39	0.62

• Results of the meta-analysis model

• Given a 0.05 unit decrease in bone mineral density implies a typical patient is at twice the risk of osteoporotic fracture

Image: Image:

Method of estimation	OR _{pd,0.05}	95% C.I.	
Gg vs gg	0.57	0.42	0.77
GG vs gg	0.40	0.28	0.57
Combined	0.50	0.39	0.62

• Results of the meta-analysis model

• Given a 0.05 unit decrease in bone mineral density implies a typical patient is at twice the risk of osteoporotic fracture

Meta-analysis of MR studies

• Genetic model-free approach - estimate λ - summary of mode of inheritance of the risk allele [Minelli et al., 2005]

• Genetic model-free approach - estimate λ - summary of mode of inheritance of the risk allele [Minelli et al., 2005]

• Interpretation of λ ; 0 - recessive, 0.5 - co-dominant, 1 - dominant

- Genetic model-free approach estimate λ summary of mode of inheritance of the risk allele [Minelli et al., 2005]
- Interpretation of λ ; 0 recessive, 0.5 co-dominant, 1 dominant
 - Provided genotype is independent of the phenotype (and confounders) [Thompson et al., 2006]

$$\lambda = \frac{\theta_2}{\theta_3} = \frac{\delta_2}{\delta_3}$$

- Genetic model-free approach estimate λ summary of mode of inheritance of the risk allele [Minelli et al., 2005]
- Interpretation of λ ; 0 recessive, 0.5 co-dominant, 1 dominant
 - Provided genotype is independent of the phenotype (and confounders) [Thompson et al., 2006]

$$\lambda = \frac{\theta_2}{\theta_3} = \frac{\delta_2}{\delta_3}$$

• Extended meta-analysis model

- Genetic model-free approach estimate λ summary of mode of inheritance of the risk allele [Minelli et al., 2005]
- Interpretation of λ ; 0 recessive, 0.5 co-dominant, 1 dominant
 - Provided genotype is independent of the phenotype (and confounders) [Thompson et al., 2006]

$$\lambda = \frac{\theta_2}{\theta_3} = \frac{\delta_2}{\delta_3}$$

• Extended meta-analysis model

$$\begin{bmatrix} \theta_{2i} \\ \delta_{2i} \\ \theta_{3i} \\ \delta_{3i} \end{bmatrix} \sim \mathsf{MVN} \left(\begin{bmatrix} \eta \lambda \delta \\ \lambda \delta \\ \eta \delta \\ \delta \end{bmatrix}, \mathbf{V}_i + \mathbf{\Sigma} \right)$$

3

(日) (周) (三) (三)

$$egin{aligned} & heta_{2i} \sim \mathsf{N}(\eta\lambda\delta,\mathsf{var}(heta_{2i})), \quad \delta_{2i} \sim \mathsf{N}(\lambda\delta,\mathsf{var}(\delta_{2i})) \ & heta_{3i} \sim \mathsf{N}(\eta\delta,\mathsf{var}(heta_{3i})), \quad \delta_{3i} \sim \mathsf{N}(\delta,\mathsf{var}(\delta_{3i})) \end{aligned}$$

3

(日) (周) (三) (三)

$$\begin{aligned} \theta_{2i} &\sim \mathsf{N}(\eta\lambda\delta,\mathsf{var}(\theta_{2i})), \quad \delta_{2i} &\sim \mathsf{N}(\lambda\delta,\mathsf{var}(\delta_{2i})) \\ \theta_{3i} &\sim \mathsf{N}(\eta\delta,\mathsf{var}(\theta_{3i})), \quad \delta_{3i} &\sim \mathsf{N}(\delta,\mathsf{var}(\delta_{3i})) \end{aligned}$$

Prior distributions

 $\delta, \ \eta \sim \mathsf{N}(0, 1 \times 10^6), \quad \lambda \sim \mathsf{Beta}(0.5, 0.5)$

イロト 不得下 イヨト イヨト 二日

$$\begin{aligned} \theta_{2i} &\sim \mathsf{N}(\eta\lambda\delta,\mathsf{var}(\theta_{2i})), \quad \delta_{2i} &\sim \mathsf{N}(\lambda\delta,\mathsf{var}(\delta_{2i})) \\ \theta_{3i} &\sim \mathsf{N}(\eta\delta,\mathsf{var}(\theta_{3i})), \quad \delta_{3i} &\sim \mathsf{N}(\delta,\mathsf{var}(\delta_{3i})) \end{aligned}$$

Prior distributions

 $\delta, \ \eta \sim \mathsf{N}(0, 1 imes 10^6), \quad \lambda \sim \mathsf{Beta}(0.5, 0.5)$

Results

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$egin{aligned} & heta_{2i} \sim \mathsf{N}(\eta\lambda\delta,\mathsf{var}(heta_{2i})), & \delta_{2i} \sim \mathsf{N}(\lambda\delta,\mathsf{var}(\delta_{2i})) \ & heta_{3i} \sim \mathsf{N}(\eta\delta,\mathsf{var}(heta_{3i})), & \delta_{3i} \sim \mathsf{N}(\delta,\mathsf{var}(\delta_{3i})) \end{aligned}$$

Prior distributions

 $\delta, \ \eta \sim \mathsf{N}(0, 1 imes 10^6), \quad \lambda \sim \mathsf{Beta}(0.5, 0.5)$

Results

Method of estimation	<i>OR_{pd,0.05}</i>	95% C.I./Cr.I.		λ	95% C.I./Cr.I.	
ML - MVN	0.42	0.28	0.61	0.33	0.19	0.47
Bayesian - PNF	0.46	0.32	0.61	0.30	0.17	0.45

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ISCB 28, 1 August 2007 11 / 14

モ

・ロト ・四ト ・ヨト ・ヨト

Talk summary and discussion

• Random allocation of an individual's genotype allows use of instrumental variable theory

3

Talk summary and discussion

- Random allocation of an individual's genotype allows use of instrumental variable theory
 - Meta-analysis analysis of two genotype comparisons; extended to include the genetic model-free approach

Talk summary and discussion

- Random allocation of an individual's genotype allows use of instrumental variable theory
 - Meta-analysis analysis of two genotype comparisons; extended to include the genetic model-free approach
- Meta-analysis of genetic association studies using merged genotype comparisons [Salanti and Higgins, 2007]

Acknowledgements

• Student conference award

- Medical Research Council Capacity Building PhD Studentship in Genetic Epidemiology (G0501386).
- Dr. Martin Tobin is funded by a Medical Research Council Clinician Scientist Fellowship (G0501942).

References

Katan, M. (1986).

Apolipoprotein e isoforms, serum cholesterol, and cancer. *Lancet*, 327:507–508.

Katan, M. (2004).

Commentary: Mendelian randomization, 18 years on. International Journal of Epidemiology, 33(1):10–11.

Minelli, C., Thompson, J., Abrams, K., Thakkinstian, A., and Attia, J. (2005).

The choice of a genetic model in the meta-analysis of molecular association studies. *International Journal of Epidemiology*, 34:1319–1328.

Salanti, G. and Higgins, J. P. T. (2007).

Meta-analysis of genetic association studies under different inheritance models using data reported as merged genotypes. Statistics in Medicine.

in press.

Spiegelhalter, D. (1998).

Bayesian graphical modelling: a case-study in monitoring health outcomes. *Applied Statistics*, 47(1):115–133.

Thompson, J., Minelli, C., Abrams, K., Tobin, M., and Riley, R. (2005).

Meta-analysis of genetic studies using Mendelian randomization - a multivariate approach. *Statistics in Medicine*, 24:2241–2254.

Thompson, J. R., Minelli, C., and Abrams, K. R. (2006).

Model-free meta-analysis of genetic association studies of continuous outcomes. In *ISCB 27 Abstract Book*. ISCB.

< ロト < 同ト < ヨト < ヨト