
Some more R, Git, and R 
Markdown and Quarto tips

MRC IEU Code Clinic
07/05/2025
Tom Palmer



Overview

● Some more R Markdown and Quarto tips
○ Seven tips for making Quarto revealjs presentations
○ Creating R Markdown and Quarto tutorial documents
○ Creating multilanguage Quarto documents (i.e., R and Stata executed code in same doc)

● Some more R tips
○ Creating a reproducible environment in R without using renv - CRAN snapshot repositories for 

the win
● Some more Git, GitHub Desktop (and Lazygit), and GitHub tips

○ Making suggestions on a GitHub PR
○ Amending a previous commit message in GitHub Desktop
○ Amending a previous commit in GitHub Desktop
○ Amending previous commits and commits messages in Lazygit - interactive rebase made 

"easy"



Some more R Markdown and Quarto tips



Seven tips for making Quarto presentations

● Quarto revealjs docs https://quarto.org/docs/presentations/revealjs/ 
● https://remlapmot.github.io/post/2025/quarto-revealjs-tips/ 

https://quarto.org/docs/presentations/revealjs/
https://remlapmot.github.io/post/2025/quarto-revealjs-tips/


Creating R Markdown and Quarto tutorial documents

● R Markdown: 
● Quarto: https://remlapmot.github.io/post/2025/quarto-conditional-content/ 

https://remlapmot.github.io/post/2025/quarto-conditional-content/


Creating multilanguage Quarto documents

● Technically Quarto documents may only have 1 engine
● Workaround: use {{< embed >}} shortcode to include chunks and output from 

documents using other engines
● https://remlapmot.github.io/post/2025/multi-engine-quarto/ 
● Setting up the nbstata Jupyter kernel in a uv venv

○ uv docs (including installation instructions) https://docs.astral.sh/uv/ 

https://remlapmot.github.io/post/2025/multi-engine-quarto/
https://docs.astral.sh/uv/


Some more R tips



Reproducible R environments using CRAN snapshot repos 
without using renv/pak/pacman
● (Without using renv or similar)
● Simply note the date at the top of your script in a comment
● Then run update.packages()
● (Assume using current version of R)
● Then if you need to recreate this environment use a snapshot from

https://packagemanager.posit.co/client/#/repos/cran/setup 
● Nb. RSPM = PPPM = P3M

https://packagemanager.posit.co/client/#/repos/cran/setup




● install.packages(c("package1", "package2"), repos = 
"https://packagemanager.posit.co/cran/2025-03-20")

● Snapshots created at midnight - so you might need tomorrow's date
● The Public Posit Package Manager now only CRAN snapshotting service 

(used to be MRAN as well)
● Many companies advocated this approach: RevolutionR, Cynkra (e.g., 

https://github.com/cynkra/cynkrathis )
● Can be used within renv

https://packagemanager.posit.co/cran/2025-03-20
https://github.com/cynkra/cynkrathis


● For a GitHub only package you can record the most recent commit and then 
include its installation as: 
remotes::install_github('MRCIEU/TwoSampleMR@6268c2c')

● Or use date to go through commit history later to find SHA
○ https://github.com/MRCIEU/TwoSampleMR/commits/ 

● Or you could save a copy of the repo or fork the repo on the day you installed 
it

● Only works for simple examples - as you need to know SHA of any hard (and 
soft) GitHub only dependency packages you used

● Or you can download the package from an r-universe - see apis page
○ https://mrcieu.r-universe.dev/apis 

https://github.com/MRCIEU/TwoSampleMR/commits/
https://mrcieu.r-universe.dev/apis


Some more Git, GitHub Desktop (and 
Lazygit), and GitHub tips



Making suggestions on a GitHub PR

Click + on LHS for a line (or Shift 
click for several lines)

Then button third right in popup 
is Add a suggestion; and has 
Markdown syntax

```suggestion

```



Amending previous commit message in GitHub Desktop

● https://remlapmot.github.io/post/2025/amend-commit-messages/ 

https://remlapmot.github.io/post/2025/amend-commit-messages/


Interactive rebase made "easy" in Lazygit

● My Git levels of attainment
○ Beginner: branches, push and pull between local and GitHub, make PR
○ Medium: squash, reorder, resolve merge conflicts, stash, worktrees
○ Advanced: interactive rebase

● Interactive rebase at the command line is very very hard (see next slide)
https://opensource.com/article/20/3/lazygit 

● Lazygit installation instructions: 
https://github.com/jesseduffield/lazygit?tab=readme-ov-file#installation 

● Launch by running lazygit in Terminal

https://opensource.com/article/20/3/lazygit
https://github.com/jesseduffield/lazygit?tab=readme-ov-file#installation


Interactive rebase at the command line is hard (don't do it)



Lazygit in action



Rewording and editing commits in Lazygit

● To edit previous commit messages in Lazygit
○ Navigate to Reflog
○ r - Reword - to edit previous commit message
○ Move to message box (<Tab>), alt + <Enter> to commit

● To edit previous commits in Lazygit
○ Move to Reflog [4]
○ Move to commit want to edit
○ e - Edit - to edit previous commit 
○ Press <Enter> on commit want to edit
○ e - Edit
○ Pops you into vim - make edits - then save and quit :wq
○ Move back to top left Files pane
○ Space - stage changed file/s
○ Now continue rebase - m - rebase options - <Enter> or c - continue
○ Move to Commit pane - Escape - and should see edited commit
○ Now probably want to edit commit message of edited commit - Move to Reflog - r - Reword commit message of 

squashed commit



Summary

● Slightly random collection of R, Quarto, and Git tips
● I hope something was interesting/useful


