Some more R, Git, and R
Markdown and Quarto tips

MRC IEU Code Clinic
07/05/2025
Tom Palmer

Overview

e Some more R Markdown and Quarto tips
o Seven tips for making Quarto revealjs presentations
o Creating R Markdown and Quarto tutorial documents
o Creating multilanguage Quarto documents (i.e., R and Stata executed code in same doc)

e Some more R tips
o Creating a reproducible environment in R without using renv - CRAN snapshot repositories for
the win

e Some more Git, GitHub Desktop (and Lazygit), and GitHub tips

Making suggestions on a GitHub PR

Amending a previous commit message in GitHub Desktop

Amending a previous commit in GitHub Desktop

Amending previous commits and commits messages in Lazyqgit - interactive rebase made
"easy"

o O O O

Some more R Markdown and Quarto tips

Seven tips for making Quarto presentations

e Quarto revealjs docs https://quarto.org/docs/presentations/revealjs/
e https://remlapmot.qgithub.io/post/2025/quarto-revealjs-tips/

https://quarto.org/docs/presentations/revealjs/
https://remlapmot.github.io/post/2025/quarto-revealjs-tips/

Creating R Markdown and Quarto tutorial documents

e R Markdown:
e (Quarto: https://remlapmot.qithub.io/post/2025/quarto-conditional-content/

https://remlapmot.github.io/post/2025/quarto-conditional-content/

Creating multilanguage Quarto documents

e Technically Quarto documents may only have 1 engine

e \Workaround: use {{< embed >}} shortcode to include chunks and output from
documents using other engines

e https://remlapmot.github.io/post/2025/multi-engine-quarto/

e Setting up the nbstata Jupyter kernel in a uv venv
o uv docs (including installation instructions) https://docs.astral.sh/uv/

https://remlapmot.github.io/post/2025/multi-engine-quarto/
https://docs.astral.sh/uv/

Some more R tips

Reproducible R environments using CRAN snapshot repos
W|thout using renv/pak/pacman

(Without using renv or similar)

Simply note the date at the top of your script in a comment

Then run update.packages()

(Assume using current version of R)

Then if you need to recreate this environment use a snapshot from
hitps://packagemanager.posit.co/client/#/repos/cran/setup

e Nb. RSPM = PPPM = P3M

https://packagemanager.posit.co/client/#/repos/cran/setup

- C @ =% pack

2025-03-20

&= posit Package Manager

@® Repasitory: cran

v Q Packages in the cran repository

Set up your environment to install R packages from cran

Select from the following options, then follow the customized Instructions below to complete your setup,

Operating System: what system are you using the packages on?

O macos
® Wwindows
O Linux

Snapshots: do you want to freeze package versions to enhance reproducibility?

O No, install the most recent packages available
® VYes, always install packages from the date | choose

025

21 |22:|23:|124 (|25

28 29 30 31

The URL below encodes the following snapshot references:

February 2025

2T #||5:]6 | F
911101 ||12:|{13 |14
16 17 18 19 20 21

23 24 25 26 27 28

* cran [Last update: Mar 20, 2025 12:00 AM UTC]

Environment: where are you using R?

@® RStudio IDE
O Posit Workbench
O Posit Connect

O Some other R outside of RStudio IDE

Repository URL:

https://packagemanager.posit.co/cran/2825-83-20

22

March 2025

2\ 3 ||8:]]5]]61]:7
9 10 1 12 13 14

6 17 18 19 20

Copy

Windows

Package Manager
compatible with V
optionally selecte

Frozen to March

Package Manager
as of March 20, 2(

Freezing to a spet
when re-installing
always match, or
from a previous ¢

RStudio IDE
Get more info on

Repository URL
Use this URL to in
Manager directly.

e install.packages(c("package1", "package2"), repos =
"https://packagemanager.posit.co/cran/2025-03-20")

e Snapshots created at midnight - so you might need tomorrow's date

e The Public Posit Package Manager now only CRAN snapshotting service
(used to be MRAN as well)

e Many companies advocated this approach: RevolutionR, Cynkra (e.g.,
https://github.com/cynkra/cynkrathis)

e Can be used within renv

cynkra RSPM snapshots

cynkra makes use of certain RStudio Package Manager (RSPM) snapshots across projects. Usually each R
Version is tied to a snapshot near it's release date. If a snapshot is considered unstable due to certain R package
version clashes, additional snapshots for specific R versions can be listed.

https://packagemanager.posit.co/cran/2025-03-20
https://github.com/cynkra/cynkrathis

For a GitHub only package you can record the most recent commit and then
include its installation as:
remotes::install_github('MRCIEU/TwoSampleMR@6268c2c')
Or use date to go through commit history later to find SHA

o https://qithub.com/MRCIEU/TwoSampleMR/commits/
Or you could save a copy of the repo or fork the repo on the day you installed
it
Only works for simple examples - as you need to know SHA of any hard (and
soft) GitHub only dependency packages you used
Or you can download the package from an r-universe - see apis page

o https://mrcieu.r-universe.dev/apis Do e
httpsy/mrcieu.r-universe deviapi/snapshot/zip

nnnnnnnnnn (defaults Source packages Binaries o R-4.5 ahpac
Include evarything} Windows binaries Binaries for R-4.4 BESIDEMR

MacOS binaries Binaries for R-4.3 bpbounds
BWMR

mmmmmm CAMeRa

caus!
CheckSumStats
it

ci
CIVMR

https://github.com/MRCIEU/TwoSampleMR/commits/
https://mrcieu.r-universe.dev/apis

Some more Git, GitHub Desktop (and
Lazygit), and GitHub tips

Making suggestions on a GitHub PR

120 +
. . . 121 + As with all things OpenSAFELY, this work was done out in public -
CI'Ck + On LHS for a ||ne (Or Sh'ft you can see more of the technical details
122 + in the [GitHub repository for the OpenSAFELY R image]
click for several lines) (htes://github.con/opensately=core/r-docket)
123 +
124 + This is much stronger technical foundation for our R support from
H H H now on. It will make it far easier for us to maintain, and to
Then bUtton thlrd rlght In popup respond to R user needs, and also to release future new versions
H H . of the image with the latest versions of R - perhaps slightly more
is Add a suggestion; and has
Markdown syntax Wie Preview @ H B I = O @ ==

Add a suggestion, <Ctrl+g>

“““suggestion o

This is a much stronger technical foundation for our R support
from now on. It will make it far easier for us to maintain,
AR and to respond to R user needs, and also to release future new

X Markdown is supported [2A] Paste, drop, or click to add files

Cancel Add single comment

Amending previous commit message in GitHub Desktop

e https://remlapmot.qithub.io/post/2025/amend-commit-messaqges/

https://remlapmot.github.io/post/2025/amend-commit-messages/

Interactive rebase made "easy" in Lazyqit

e My Git levels of attainment
o Beginner: branches, push and pull between local and GitHub, make PR
o Medium: squash, reorder, resolve merge conflicts, stash, worktrees
o Advanced: interactive rebase

e Interactive rebase at the command line is very very hard (see next slide)
https://opensource.com/article/20/3/lazyqit

e Lazygit installation instructions:
https://qgithub.com/jesseduffield/lazyqgit?tab=readme-ov-file#installation

e Launch by running lazygit in Terminal

https://opensource.com/article/20/3/lazygit
https://github.com/jesseduffield/lazygit?tab=readme-ov-file#installation

Interactive rebase at the command line is hard (don't do it)

The user experience of an interactive rebase on the Git command line is a horror story that belongs in a
Stephen King novel. To do something as simple as amending an old commit requires following these steps
(do not let your kids read this without parental guidance):

1. Stash the changes you want to apply with git stash.
2. Copy the SHA of the commit you want to amend.
3. Begin the rebase with git rebase --interactive <commit-SHA>".

4. (This is where the screams start...) A TODO file opens in Vim, where you'll need to find your commit and
replace pick on the line with edit.

5. Save the file.
6. Unstash your changes with git stash pop.
7. Amend the commit with git commit --amend.

8. Continue the rebase with git rebase --continue.

Just thinking back to the days of CLI terror gives me heart palpitations.

Lazygit in action

[1]-Status
(T: basing) TwoSampleMR - 53ea4l

- Worktrees - Submo

—[3]-Commits (devel)

e99444dd TF Delete use of mag
Update NEWS.md
devtools ::documen
Add parentheses
Remove curly brac
Add parenteses

1 of 300

—[4]-Diff files (53ea410 Updat—

N NEWS.md

M lazygit

lazygit
—Staged change

diff --git a/NEWS.md b/NEWS.md
index 2512823f..3bb32e75 100644
--- a/NEWS.md
+++ b/NEWS.md

(Release date 2025-##-#4)

TwoSampleMR vB0.6.15

1 of 1~
[S5]-Stash

—[1]-Status

| (rebasing

) TwoSampleMR = 53ea4l

[2]-Fi
M NEWS.md

| S—

- Worktrees -

Commit summary

Submo

M lazygit

lazygit
—Staged changes

diff --git a/NEWS.md b/NEWS.md
index 2512823f..3bb32e75 100644
--— a/NEWS.md
+++ b/NEWS.md

(Release date 2025-##-##)

—[3]- |Amend NEWS

(no *

deve
deve
deve
deve
deve

—[4]1-Dif
[M NEWS.m

{

cription

Command log
On multivariable: !!GitHubwgJ[_ git add -- NEWS.md

1 o0f 1
1se options: 1

Asor 1~

—[5]-Stash
On multi

variable: "GitNuD_D‘

W rebase

1:30F 31~

—Command log

> to toggle focus, <c-o> to open menu

Press <a-enter>

to

commit

git add -- NEWS.md

Rewording and editing commits in Lazygit

e To edit previous commit messages in Lazygit
o Navigate to Reflog
o r-Reword - to edit previous commit message
o Move to message box (<Tab>), alt + <Enter> to commit

e To edit previous commits in Lazyqgit
o Move to Reflog [4]
Move to commit want to edit
e - Edit - to edit previous commit
Press <Enter> on commit want to edit
e - Edit
Pops you into vim - make edits - then save and quit :wq
Move back to top left Files pane
Space - stage changed file/s
Now continue rebase - m - rebase options - <Enter> or c - continue
Move to Commit pane - Escape - and should see edited commit
Now probably want to edit commit message of edited commit - Move to Reflog - r - Reword commit message of
squashed commit

0O O O o0 O O o0 O O O

Summary

e Slightly random collection of R, Quarto, and Git tips
e | hope something was interesting/useful

