
Using Git, GitHub Desktop, and
GitHub for novice and

experienced users
Yi Liu and Tom Palmer

 1st December 2023

Learning outcomes

● Novice users: be able to make and commit into a repo on GitHub
● Experienced users: how to avoid some common pitfalls

● Understand that Git and GitHub can be used in different ways for different
projects

● Understand that Git provides certain features and GitHub provides additional
features

● Be able to use a graphical Git GUI, e.g., GitHub Desktop, VS Code extension
● Be able to use Git, GitHub Desktop/VS Code and GitHub with confidence
● Be able to competently contribute to other Git repositories

Why Git

https://xkcd.com/1597/

https://xkcd.com/1597/

Installation links

● GitHub Desktop https://desktop.github.com/
● Git for Windows https://git-scm.com/download/win , https://gitforwindows.org/
● macOS install with homebrew: brew install git

https://desktop.github.com/
https://git-scm.com/download/win
https://gitforwindows.org/

3 researcher use cases

● Helena
● Des
● Dom

Helena

● Wants to make code/supplementary material available online for her journal
article

● Does not need either Git nor GitHub Desktop installed on computer
● Doesn't need her code folders initialised as Git repos
● Simply drag and drop files from computer into GitHub web interface, commit

message: "Add files via upload"
● Recommend turning off GitHub repository features such as Issues, Releases,

Discussions, etc (through About pane | settings). If someone wants to contact
her they can email

Des

● Coding an R package
● Essentially working alone, occasionally might receive a pull request from a

supervisor/interested user
● Needs GitHub Desktop installed (which has a version of Git within it)
● Needs project folders initialised as Git repos
● Needs to take care to write meaningful commit messages
● Does it really matter if he always works on the main branch?
● Question: Why might you want to send a PR to your own repo even if you are

the only contributor?
● Helpful to make Releases in the GitHub repo (and/or use Git tags)

Dom

● Coding R packages and additionally wants to send pull requests to other
people's projects on GitHub

● Needs both Git and GitHub Desktop installed
● Needs to understand

○ How to fork a repo
○ Never send a PR from his own main/master/default branch - why??
○ Needs to understand how to rebase a branch
○ When is it acceptable/required to force push (i.e., rewrite Git history) a branch??
○ Will need to understand some Git Terminal commands (git cmdname)
○ Needs to know how to resolve Git merge conflicts

A scenario

● Dom starts work on his home PC on a new branch (pushes it up to GitHub)
● Goes to work, works on the branch on his work PC but at some point force

pushes to the branch (up to GitHub)
● When he goes home, how does he get the updated version of his branch?
● At home in GitHub Desktop in top right box he will see both arrows - be

careful when you see these!!

● (For show) Expanding the dropdown arrow - in this box do not select either
option

● git reset is your friend

● GitHub Desktop is happy again

Squashing and reordering commits

● Select commits and reorder/squash
● Occasionally GitHub Desktop can hang and fail to complete such operations
● In which case open a terminal in your repo and run: git rebase --abort

Reordering example (select commits | drag and drop where you want)

Git features versus GitHub features

● GitHub provides alot of features on top of Git features
● E.g., Git has the concept of tags (for a version release), GitHub extends this

with its Releases
○ This is why alot of projects which are mailing list based only use Git features, e.g., Git itself

https://github.com/git/git/

https://github.com/git/git/

My R package is on CRAN - what's my workflow?

● Once you have made a release to CRAN and release/tag in your repo you
can continue committing on the default branch e.g.,
https://github.com/yihui/knitr

https://github.com/yihui/knitr

My R package is not on CRAN - what's my workflow?

● Users are (likely) installing your package from the latest commit on the main
branch, e.g., remotes::install_github("TwoSampleMR")

● Should you declare a new version with each commit onto main/master??
● We could instruct users to install the latest release, i.e.,

remotes::install_github("MRCIEU/TwoSampleMR@*release")

Under what circumstances do merge conflicts occur?

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressin
g-merge-conflicts/about-merge-conflicts

● Editing same line of same file (or editing a file that someone else deletes)

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/about-merge-conflicts
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/about-merge-conflicts

Renaming a file to retain its Git history: git mv

● Do not just commit in deletion of old file and creation of new one
● git mv existing-filename new-filename

Gotcha: Windows (CRLF) versus macOS/Linux/Unix (LF)
line endings
● Secretly Git wants text files to have LF line endings, and this is how they are

stored on GitHub
● Include a .gitattributes file in your repo to be safe

● https://grpehr.github.io/training/01-08-common-errors.html#no-content-change
s-found

● Be careful if all text files in a repo show as changed - give away you might be
about to make this mistake

https://grpehr.github.io/training/01-08-common-errors.html#no-content-changes-found
https://grpehr.github.io/training/01-08-common-errors.html#no-content-changes-found

Perhaps the best worst error/warning message

How can we improve the commits in this PR?

https://github.com/MRCIEU/TwoSampleMR/pull/419

https://github.com/MRCIEU/TwoSampleMR/pull/419

● Try to make sure each commit does a specific thing - so that it could be
reverted later if necessary

● (Arguably this should be 3 PRs)
○ the addition of the new Steiger code
○ ggplot2 size to linewidth argument
○ mr_keep fix

GitHub message … but couldn't find those commits

Empty subdirectories … don't show up in Git

● Git tracks file contents
● If a new subdirectory of your repo is empty it will not show as a change in Git

(nor in GitHub Desktop)
● If you want to keep a subdirectory add a blank text file named .gitkeep and

check that in

git concepts: working tree

A git repository (or repo) is a directory
tracked by git, and the version control
information is stored under the ./.git
directory. This external directory is
called the working tree.

git concepts: commits, branches

Your source version history consists of
commits as basic units

A branch is a collection of commits.

As a convention, for a big repo,
extensive changes should be first done
in their own branches, e.g. a branch
involving development for a big feature.
After the development reaches a good
level of maturity, this branch gets
merged back to the default master /
main branch.

git concepts: the remote repository
git is a decentralised system -- your local
repo contains all source history already.

Nevertheless you can pair your local repo
with an upstream remote repo to use it as
a

- Backup
- Centralised source for collaboration

between multiple colleagues, or
yourself across multiple machines

Your local repo can be synced with a
remote via git pull (fetch & rebase) and
git push.

GitHub is one of the platforms to host your
remote repos.

Common git operations
- View git history

- repo
- file

- See what has been changed
(git diff)

- Try make some changes (git
add, git commit)

- Reset those changes (git reset)!
- NB: git revert is a different

command
- Branches
- Remote

Here I use the Visual Studio Code text
editor as my git client.
Extra extension: Git History

Tips for starters:
1. Billions of tutorials on git out there
2. Use a graphical client for those git

commands

https://github.com/YiLiu6240/TwoSampleMR-test-git

git history

git diff

Make some changes and commit

resetting changes

branches

Push to remote

Resources

- Tutorials
- https://swcarpentry.github.io/git-novice/
- Training material for Electronic Health Records group https://grpehr.github.io/training/

- Technical details on Git
- Linus Torvalds Google Tech Talk https://youtu.be/4XpnKHJAok8?si=4NNxxajwhbohJ3Wl
- Git Rev News https://git.github.io/rev_news/
- Many excellent blog posts

- Derrick Stolee https://github.blog/author/dstolee/
- Elijah Newren

https://blog.palantir.com/optimizing-gits-merge-machinery-1-127ceb0ef2a1
- Git clients

- GitHub Desktop, Tower, GitKraken (GitLens VSCode Extension)
- … and a million tutorials about Git on Youtube and other platforms
- Nothing can replace your trial by error – don’t be afraid to make mistakes

https://swcarpentry.github.io/git-novice/
https://grpehr.github.io/training/
https://youtu.be/4XpnKHJAok8?si=4NNxxajwhbohJ3Wl
https://git.github.io/rev_news/
https://github.blog/author/dstolee/
https://blog.palantir.com/optimizing-gits-merge-machinery-1-127ceb0ef2a1

Summary

● Are you a Helena, Des, or Dom?
● Or maybe you'll have different use cases on different projects
● Any questions/problems working with Git and GitHub?

