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• Introduction
• Introduction to directed acyclic graphs (DAGs)
• d-separation rules
• Statistical independence
• Backdoor paths and confounding
• Examples
• Disadvantages of DAGs
• Discussion
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Mathematics 
& Statistics Introduction I

• Alot of the theory developed in the late 1980s and 1990s (Pearl
(1995))
• Hit mainstream only relatively recently (Munafò et al. (2018),

Hèrnan (2017))
• Recent publicity, Pearl’s Book of Why published this year
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Mathematics 
& Statistics Introduction II

• Lots of interest in epidemiology, however . . . DAG anxiety
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Mathematics 
& Statistics Introduction III

• The (old) rules of epidemiological modelling:
◦ Adjust for common causes
◦ Do not adjust for common effects
◦ Do not adjust for variables on the causal pathway

• Easy to apply to simple situations with a few variables
• But how do we apply these when the model is (realistically)

complex?
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Mathematics 
& Statistics Introduction IV

• What should we adjust/not adjust for to estimate the effect of
Health service utilisation on Child mortality?
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Mathematics 
& Statistics Introduction to DAGs I

Causal

• A DAG is said to be causal for an effect if all common causes of
the exposure and outcome are on the DAG

D: Directed

• DAGs depict structural relationships – causal effects without
modelling assumptions
• Unlike SEM path diagrams they do not show residuals
• DAGs for different models are the same, e.g.
◦ linear regression of Y on X, logistic regression of Y on X
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Mathematics 
& Statistics Introduction to DAGs II

A: Acyclic

• Following the direction of arrows from X we should not be able
to get back to X
• This DAG is not allowed

• Intuition: the rules of conditional independence
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Mathematics 
& Statistics Introduction to DAGs III

G: Graph

• Nodes represent variables
• Say we have this regression,
yi = β0 + β1xi + εi, εi

iid∼ N(0, σ2)
• Arrows represent effects (arrow from X to Y represents β1)

Path

• Any consecutive sequence of arrows (edges) regardless of the
direction of the arrow
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& Statistics d-separation rules I

• d: directional
• Defined by Pearl (1995)
• Rule 1: if there are no variables being conditioned on, a path is

blocked if and only if 2 arrows collide at some point on the path

• Because of the collider U we say X and Y are not d-connected
• d-connected: unblocked path between 2 variables (i.e. path

with no collider)
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Mathematics 
& Statistics d-separation rules II

• Rule 2: Any path that contains a non-collider/common
cause/confounder that has been conditioned on is blocked

• Conditioning/adjusted for/included in a model denoted by
square box around variable
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Mathematics 
& Statistics d-separation rules III

• Rule 3: A collider that has been conditioned on does not block
a path
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Mathematics 
& Statistics d-separation rules IV

• Rule 4: A collider that has a descendant that has been
conditioned on does not block a path
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Mathematics 
& Statistics d-separation rules V

• If a pair of variables are d-separated they are statistically
independent (conditional on any variables required to block
backdoor paths between them)
• X and Y independent
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Mathematics 
& Statistics d-separation rules VI

• X and Y independent given U ; written as X ⊥⊥ Y |U
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Mathematics 
& Statistics d-separation rules VII

• Complex pathways now have a (hopefully) clearer interpretation

• Are X and Y d-separated if we, condition on:
◦ Z1?
◦ Z2?
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& Statistics Backdoor paths and confounding

I

• A backdoor path starts by travelling the wrong way along an
arrow

• X-C-Y is a backdoor path
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Mathematics 
& Statistics Backdoor paths and confounding

II
• We can travel the wrong direction along an arrow more than

once

• X-U-C-Y is a backdoor path
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Mathematics 
& Statistics Backdoor paths and confounding

III

• Here C fulfills conventional definition of a confounder, because
it is:
◦ associated with X (arrow C-X)
◦ associated with Y conditional on X (arrow C-Y)
◦ is not on the causal pathway between X and Y

• Structural definition of confounding: the existence of an open
backdoor path between X and Y .
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IV
• In trials randomization removes C-X (X: randomized treatment)

arrow
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V
• If we condition on C (e.g. include it as an additive covariate in

model) then the path is blocked
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Mathematics 
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VI
• In this DAG, to estimate the effect of X on Y what should we

do?
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VII
• We can adjust for U

• We can adjust for C
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VIII
• We can adjust for both U and C
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IX
• Defining a variable as a confounder is relative to which effect

we are estimating
• To estimate the effect of U on Y what should we do?
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Mathematics 
& Statistics Backdoor paths and confounding

X
• Say we propose the model:
yi = β0 + β1xi + β2mi + εi, εi

iid∼ N(0, σ2)

• If the estimate β̂1 is found not to be null, we could have
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XI
• or

• or an even more complex confounding structure (or others)
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Mathematics 
& Statistics Confounding example I

• Let’s investigate what happens when we simulate some data
• Assuming linear models

• True model is: yi = β0 + β1xi + β2ci + εi, εi
iid∼ N(0, σ2)
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Mathematics 
& Statistics Confounding example II

• Of course the unadjusted model is biased
set.seed(123456)
n <- 150
c <- rnorm(n)
x <- c + rnorm(n)
y <- c + x + rnorm(n)
lm(y ~ x) %>% summary() %>% coef()

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04430578 0.10116577 -0.4379522 6.620594e-01
## x 1.40874066 0.06933222 20.3187003 1.164942e-44
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Mathematics 
& Statistics Confounding example III

• The true model is unbiased
lm(y ~ x + c) %>% summary() %>% coef()

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001936471 0.08563298 0.02261361 9.819892e-01
## x 0.896588477 0.08808434 10.17875007 9.487072e-19
## c 1.008965959 0.12965362 7.78201172 1.164183e-12
lm(y ~ x + c) %>% confint.default()

## 2.5 % 97.5 %
## (Intercept) -0.1659011 0.169774
## x 0.7239463 1.069231
## c 0.7548495 1.263082
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Mathematics 
& Statistics Colliding example I

• If the DAG is

• Adjusting for U induces bias
set.seed(123456)
n <- 150
x <- rnorm(n)
y <- x + rnorm(n)
u <- x + y + rnorm(n)
lm(y ~ x + u) %>% summary() %>% coef()
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& Statistics Colliding example II

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0428632 0.06130921 0.6991316 4.855745e-01
## x 0.1798452 0.10948445 1.6426553 1.025917e-01
## u 0.4611080 0.04530104 10.1787501 9.487072e-19
lm(y ~ x + u) %>% confint.default()

## 2.5 % 97.5 %
## (Intercept) -0.07730064 0.1630270
## x -0.03474037 0.3944308
## u 0.37231957 0.5498964
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Mathematics 
& Statistics Colliding example III

• Fitting the correct model
lm(y ~ x) %>% summary() %>% coef()

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07459585 0.07967631 0.9362362 3.506768e-01
## x 1.09975103 0.08041755 13.6755105 4.837012e-28
lm(y ~ x) %>% confint.default()

## 2.5 % 97.5 %
## (Intercept) -0.08156685 0.2307585
## x 0.94213554 1.2573665
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Mathematics 
& Statistics Mediation example I

• If the DAG is

• To estimate the direct effect of X on Y
set.seed(123456)
n <- 150
x <- rnorm(n)
u <- x + rnorm(n)
y <- x + u + rnorm(n)
coef(summary(modelm <- lm(y ~ x + u)))
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Mathematics 
& Statistics Mediation example II

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001936471 0.08563298 0.02261361 9.819892e-01
## x 1.008965959 0.12965362 7.78201172 1.164183e-12
## u 0.896588477 0.08808434 10.17875007 9.487072e-19
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Mathematics 
& Statistics Mediation example III

• To estimate the total effect we fit
lm(y ~ x) %>% summary() %>% coef()

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06881825 0.1111027 0.6194113 5.365978e-01
## x 1.99499006 0.1121363 17.7907659 1.379348e-38
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& Statistics Mediation example IV

• To estimate the indirect effect, first fit
coef(summary(mod1 <- lm(u ~ x)))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07459585 0.07967631 0.9362362 3.506768e-01
## x 1.09975103 0.08041755 13.6755105 4.837012e-28

• Multiply the X-U and U-Y path coefficients
(indeff <- coef(mod1)[2] * coef(modelm)[3])

## x
## 0.9860241

• Compare sum of direct and indirect effects to previous total
effect

(toteff <- coef(modelm)[2] + indeff)

## x
## 1.99499
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• If the DAG is
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& Statistics More complex example II

set.seed(123456)
n <- 150
c1 <- rnorm(n)
x <- c1 + rnorm(n)
m <- x + rnorm(n)
y <- c1 + x + m + rnorm(n)
c2 <- x + y + rnorm(n)
c3 <- c2 + rnorm(n)
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Mathematics 
& Statistics More complex example III

• For the direct effect of X on Y of course the simple model is
biased

coef(summary(modelx <- lm(y ~ x)))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07280811 0.12618137 0.5770116 5.648083e-01
## x 2.37476121 0.08647624 27.4614312 5.805841e-60
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Mathematics 
& Statistics More complex example IV

• Adjusting for C1 and M recovers the direct effect as expected
lm(y ~ x + m + c1) %>% summary() %>% coef()

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1115822 0.07946580 1.404154 1.623967e-01
## x 1.0173919 0.10672719 9.532640 4.795425e-17
## m 1.0107777 0.07653848 13.206138 1.073170e-26
## c1 0.8796623 0.12031788 7.311151 1.609465e-11
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Mathematics 
& Statistics More complex example V

• Adjusting for either C2 or C3 or both induces bias
lm(y ~ x + m + c1 + c2) %>% summary() %>% coef()

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06511859 0.05925209 1.0990092 2.735855e-01
## x -0.03128823 0.12467456 -0.2509592 8.022009e-01
## m 0.47786867 0.07501430 6.3703681 2.349755e-09
## c1 0.34870404 0.10186449 3.4232148 8.046834e-04
## c2 0.52432123 0.04807025 10.9073949 1.337696e-20
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Mathematics 
& Statistics More complex example VI

• Adjusting for C3
lm(y ~ x + m + c1 + c3) %>% summary() %>% coef()

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1080981 0.06351287 1.701987 9.090087e-02
## x 0.2389449 0.12053160 1.982425 4.932154e-02
## m 0.6772346 0.07122761 9.508036 5.841841e-17
## c1 0.5322631 0.10339923 5.147650 8.442526e-07
## c3 0.3557591 0.03891790 9.141270 5.073325e-16
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Mathematics 
& Statistics More complex example VII

• Adjusting for both C2 and C3
coef(summary(fullmodel <- lm(y ~ x + m + c1 + c2 + c3)))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07529289 0.05863517 1.2840910 2.011723e-01
## x -0.04845372 0.12324295 -0.3931561 6.947856e-01
## m 0.49102547 0.07424300 6.6137609 6.835023e-10
## c1 0.35649550 0.10055884 3.5451432 5.297073e-04
## c2 0.39564302 0.07470576 5.2960174 4.336211e-07
## c3 0.12546383 0.05627968 2.2292920 2.734301e-02
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Mathematics 
& Statistics More complex example VIII

• Model selection algorithms do not perform well
• They assume the covariates are either independent predictors

or confounders
• Backwards selection

library(MASS)

##
## Attaching package: 'MASS'

## The following object is masked from 'package:dplyr':
##
## select
stepAIC(fullmodel, direction = "backward", scope = list(lower = modelx),

trace = 0)
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Mathematics 
& Statistics More complex example IX

##
## Call:
## lm(formula = y ~ x + m + c1 + c2 + c3)
##
## Coefficients:
## (Intercept) x m c1 c2
## 0.07529 -0.04845 0.49103 0.35650 0.39564
## c3
## 0.12546
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Mathematics 
& Statistics More complex example X

• Forwards selection
fwd <- step(modelx, scope = list(lower = modelx, upper = fullmodel),

direction = "forward", trace = 0)
coef(fwd)

## (Intercept) x c2 m c1 c3
## 0.07529289 -0.04845372 0.39564302 0.49102547 0.35649550 0.12546383
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Mathematics 
& Statistics More complex example XI

• Both directions selection
bth <- step(modelx, scope = list(lower = modelx, upper = fullmodel),

direction = "both", trace = 0)
bth$coefficients

## (Intercept) x c2 m c1 c3
## 0.07529289 -0.04845372 0.39564302 0.49102547 0.35649550 0.12546383

• Pearl’s Simpsons Machine example
http://www.dagitty.net/learn/simpson/index.html
◦ Stepwise inclusion of covariates changes the sign of the effect at

every step
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& Statistics More complex example XII

• We can use DAGitty http://www.dagitty.net/ to help us (Textor
et al. (2016))

library(dagitty)
complexg <- dagitty("dag {

x -> m -> y
x <- c1 -> y
x -> c2
y -> c2
c2 -> c3

}")
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& Statistics More complex example XIII

plot(graphLayout(complexg))

c1

c2

c3 m

x

y
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Mathematics 
& Statistics More complex example XIV

• List testable implications
impliedConditionalIndependencies(complexg) %>% print()

## c1 _||_ c2 | x, y
## c1 _||_ c3 | c2
## c1 _||_ c3 | x, y
## c1 _||_ m | x
## c2 _||_ m | x, y
## c3 _||_ m | x, y
## c3 _||_ m | c2
## c3 _||_ x | c2
## c3 _||_ y | c2
## x _||_ y | c1, m
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Mathematics 
& Statistics More complex example XV

• Equivalence class
• Two DAGs are Markov equivalent if they represent the same

conditional independence relations
eqdags <- equivalentDAGs(complexg)
length(eqdags)

## [1] 3
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Mathematics 
& Statistics More complex example XVI

plot(graphLayout(eqdags[[1]]))

c1

c2

c3

m

x
y
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Mathematics 
& Statistics More complex example XVII

plot(graphLayout(eqdags[[2]]))

c1

c2

c3

m

x
y
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Mathematics 
& Statistics More complex example XVIII

plot(graphLayout(eqdags[[3]]))

c1

c2

c3

m

x

y

55 / 67



Mathematics 
& Statistics More complex example XIX

eqclass <- equivalenceClass(complexg)
plot(graphLayout(eqclass))

c1 c2

c3

m

x

y
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Mathematics 
& Statistics More complex example XX

• Number of edges that can be reversed without changing the
equivalence class

sum(edges(equivalenceClass(complexg))$e == "--")

## [1] 2
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Mathematics 
& Statistics More complex example XXI

• List adjustment sets for effect of interest
adjustmentSets(complexg, "x", "y", effect = "direct" ) %>% print()

## { c1, m }

• List adjustment sets for total effect
adjustmentSets(complexg, "x", "y") %>% print()

## { c1 }
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Mathematics 
& Statistics More complex example XXII

for(n in names(complexg)){
for( m in setdiff(descendants(complexg, n ), n)){

a <- adjustmentSets(complexg, n, m)
if(length(a) > 0 ){

cat("The total effect of ",n," on ",m,
" is identifiable controlling for:\n", sep = "")

print(a, prefix=" * ")
}

}
}

## The total effect of c1 on y is identifiable controlling for:
## * {}
## The total effect of c1 on c2 is identifiable controlling for:
## * {}
## The total effect of c1 on c3 is identifiable controlling for:
## * {}
## The total effect of c1 on x is identifiable controlling for:
## * {}
## The total effect of c1 on m is identifiable controlling for:
## * {}
## The total effect of c2 on c3 is identifiable controlling for:
## * {}
## The total effect of m on y is identifiable controlling for:
## * { c1 }
## * { x }
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& Statistics More complex example XXIII

## The total effect of m on c2 is identifiable controlling for:
## * { x }
## The total effect of m on c3 is identifiable controlling for:
## * { x }
## The total effect of x on m is identifiable controlling for:
## * {}
## The total effect of x on y is identifiable controlling for:
## * { c1 }
## The total effect of x on c2 is identifiable controlling for:
## * { c1 }
## The total effect of x on c3 is identifiable controlling for:
## * { c1 }
## The total effect of y on c2 is identifiable controlling for:
## * { x }
## * { c1, m }
## The total effect of y on c3 is identifiable controlling for:
## * { x }
## * { c1, m }
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Mathematics 
& Statistics More complex example XXIV

DAGitty’s missing feature

• Pass it correlations between a set of variables (correlations)
and generate all possible DAGs
◦ Apparently this is being developed
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Mathematics 
& Statistics Disadvantages of DAGs I

• They do not tell us the functional form of the model
◦ What outcome model do we fit, e.g. linear regression/logistic

regression etc.?
◦ What parametric form should our variables have, e.g. X, X2

• If there is confounding bias – we don’t know if important
• If there is colliding bias – we don’t know if important
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& Statistics Disadvantages of DAGs II

• We may even need to trade-off confounding and colliding
biases:
◦ If U and L both unmeasured
◦ Not adjusting for C – confounding bias
◦ Adjusting for C – colliding bias
◦ We don’t know which is worse without doing simulations for our

example
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& Statistics Disadvantages of DAGs III

• If we decompose our effect with a mediator we don’t know
relative sizes of direct and indirect effects
• Difficult to represent interactions on a DAG
• Most realistically complex modelling situations will probably

generate multiple plausible DAGs
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• Modelling guidelines informed by causal DAGs
◦ Adjust for a set of variables sufficient to block all backdoor

pathways between the two variables of interest
◦ Do not adjust for colliders or variables caused by colliders
◦ If a variable is on the causal pathway adjusting for it will

decompose the effect of interest
• Thanks for your attention
• Any questions
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