

Directed acyclic graphs: what are they and what are they useful for?

Tom Palmer, tom.palmer@lancaster.ac.uk

Lecturer in Medical Statistics, Department of Mathematics and Statistics, Lancaster University

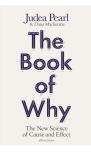
Keele University, Tuesday 4th December 2018

Outline

- Introduction
- Introduction to directed acyclic graphs (DAGs)
- d-separation rules
- Statistical independence
- Backdoor paths and confounding
- Examples
- Disadvantages of DAGs
- Discussion

Introduction I

- Alot of the theory developed in the late 1980s and 1990s (Pearl (1995))
- Hit mainstream only relatively recently (Munafò et al. (2018), Hèrnan (2017))
- Recent publicity, Pearl's Book of Why published this year



Introduction II

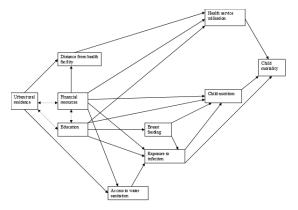
• Lots of interest in epidemiology, however ... DAG anxiety

Introduction III

- The (old) rules of epidemiological modelling:
 - Adjust for common causes
 - Do not adjust for common effects
 - Do not adjust for variables on the causal pathway
- · Easy to apply to simple situations with a few variables
- But how do we apply these when the model is (realistically) complex?

Introduction IV

• What should we adjust/not adjust for to estimate the effect of Health service utilisation On Child mortality?



Introduction to DAGs I

Causal

• A DAG is said to be causal for an effect if all common causes of the exposure and outcome are on the DAG

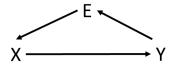
D: Directed

- DAGs depict structural relationships causal effects without modelling assumptions
- Unlike SEM path diagrams they do not show residuals
- DAGs for different models are the same, e.g.
 - $\circ~$ linear regression of Y on X, logistic regression of Y on X

Introduction to DAGs II

A: Acyclic

- Following the direction of arrows from *X* we should not be able to get back to *X*
- This DAG is not allowed



• Intuition: the rules of conditional independence

Introduction to DAGs III

G: Graph

- Nodes represent variables
- Say we have this regression,
 - $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$
- Arrows represent effects (arrow from X to Y represents β_1)

Path

• Any consecutive sequence of arrows (edges) regardless of the direction of the arrow

d-separation rules I

- d: directional
- Defined by Pearl (1995)
- Rule 1: if there are no variables being conditioned on, a path is blocked if and only if 2 arrows collide at some point on the path

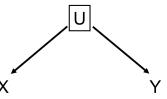
$$X \longrightarrow U \longleftarrow Y$$

- Because of the collider U we say X and Y are not d-connected
- *d*-connected: unblocked path between 2 variables (i.e. path with no collider)

d-separation rules II

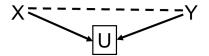
- Rule 2: Any path that contains a non-collider/common cause/confounder that has been conditioned on is blocked

 Conditioning/adjusted for/included in a model denoted by square box around variable



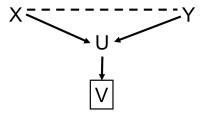
d-separation rules III

• Rule 3: A collider that has been conditioned on does not block a path



d-separation rules IV

• Rule 4: A collider that has a descendant that has been conditioned on does not block a path

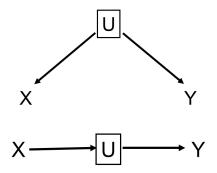


d-separation rules V

- If a pair of variables are *d*-separated they are statistically independent (conditional on any variables required to block backdoor paths between them)
- X and Y independent

d-separation rules VI

• X and Y independent given U; written as $X \perp \!\!\!\perp Y | U$



d-separation rules VII

· Complex pathways now have a (hopefully) clearer interpretation

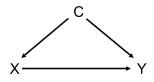
$$X \longrightarrow Z_1 \longleftarrow Z_2 \longleftarrow Z_3 \longleftarrow Y$$

Are X and Y d-separated if we, condition on:

 Z₁?
 Z₂?

Backdoor paths and confounding

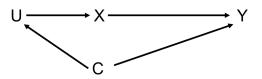
A backdoor path starts by travelling the wrong way along an arrow



• X-C-Y is a backdoor path

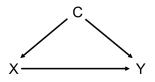
Backdoor paths and confounding II

• We can travel the wrong direction along an arrow more than once



• X-U-C-Y is a backdoor path

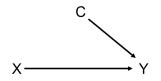
Backdoor paths and confounding III



- Here *C* fulfills conventional definition of a confounder, because it is:
 - \circ associated with X (arrow C-X)
 - \circ associated with Y conditional on X (arrow C-Y)
 - $\circ~$ is not on the causal pathway between X and Y
- Structural definition of confounding: the existence of an open backdoor path between *X* and *Y*.

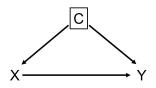
Backdoor paths and confounding IV

 In trials randomization removes C-X (X: randomized treatment) arrow



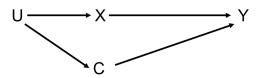
Backdoor paths and confounding V

• If we condition on *C* (e.g. include it as an additive covariate in model) then the path is blocked



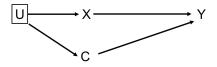
Backdoor paths and confounding VI

• In this DAG, to estimate the effect of *X* on *Y* what should we do?

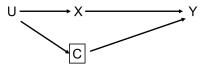


Backdoor paths and confounding VII

• We can adjust for U

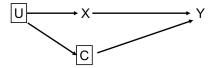


• We can adjust for *C*



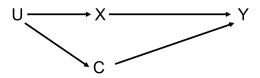
Backdoor paths and confounding VIII

• We can adjust for both U and C



Backdoor paths and confounding IX

- Defining a variable as a confounder is relative to which effect we are estimating
- To estimate the effect of U on Y what should we do?



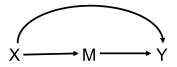
Backdoor paths and confounding X

• Say we propose the model:

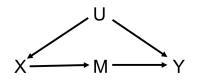
$$y_i = \beta_0 + \beta_1 x_i + \beta_2 m_i + \varepsilon_i, \quad \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

$$X \longrightarrow M \longrightarrow Y$$

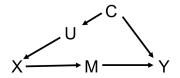
• If the estimate $\hat{\beta}_1$ is found not to be null, we could have



Backdoor paths and confounding Lancaste XI

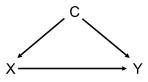


• or an even more complex confounding structure (or others)



Confounding example I

- · Let's investigate what happens when we simulate some data
- Assuming linear models



• True model is: $y_i = \beta_0 + \beta_1 x_i + \beta_2 c_i + \varepsilon_i, \quad \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$

Confounding example II

• Of course the unadjusted model is biased
set.seed(123456)
n <- 150
c <- rnorm(n)
x <- c + rnorm(n)
y <- c + x + rnorm(n)
lm(y ~ x) %>% summary() %>% coef()

 ##
 Estimate Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 -0.04430578
 0.10116577
 -0.4379522
 6.620594e-01

 ## x
 1.40874066
 0.06933222
 20.3187003
 1.164942e-44

Confounding example III

• The true model is unbiased

lm(y ~ x + c) %>% summary() %>% coef()

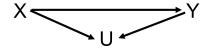
##	Estimate	Std. Error	t value	Pr(> t)
<pre>## (Intercept)</pre>	0.001936471	0.08563298	0.02261361	9.819892e-01
## x	0.896588477	0.08808434	10.17875007	9.487072e-19
## c	1.008965959	0.12965362	7.78201172	1.164183e-12
<pre>lm(y ~ x + c) %>% confint.default()</pre>				

##		2.5 %	97.5 %
##	(Intercept)	-0.1659011	0.169774
##	x	0.7239463	1.069231
##	С	0.7548495	1.263082

31/67

Colliding example I

• If the DAG is



```
• Adjusting for U induces bias
set.seed(123456)
n <- 150
x <- rnorm(n)
y <- x + rnorm(n)
u <- x + y + rnorm(n)
lm(y ~ x + u) %>% summary() %>% coef()
```


Colliding example II

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0428632 0.06130921 0.6991316 4.855745e-01
x 0.1798452 0.10948445 1.6426553 1.025917e-01
u 0.4611080 0.04530104 10.1787501 9.487072e-19
lm(y ~ x + u) %>% confint.default()

##		2.5 %	97.5 %
##	(Intercept)	-0.07730064	0.1630270
##	x	-0.03474037	0.3944308
##	u	0.37231957	0.5498964

Colliding example III

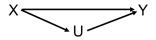
• Fitting the correct model lm(y ~ x) %>% summary() %>% coef()

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.07459585 0.07967631 0.9362362 3.506768e-01
x 1.09975103 0.08041755 13.6755105 4.837012e-28
lm(y ~ x) %>% confint.default()

2.5 % 97.5 % ## (Intercept) -0.08156685 0.2307585 ## x 0.94213554 1.2573665

Mediation example I

• If the DAG is



• To estimate the direct effect of X on Y
set.seed(123456)
n <- 150
x <- rnorm(n)
u <- x + rnorm(n)
y <- x + u + rnorm(n)
coef(summary(modelm <- lm(y ~ x + u)))</pre>

Mediation example II

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	0.001936471	0.08563298	0.02261361	9.819892e-01
##	x	1.008965959	0.12965362	7.78201172	1.164183e-12
##	u	0.896588477	0.08808434	10.17875007	9.487072e-19

Mediation example III

• To estimate the total effect we fit lm(y ~ x) %>% summary() %>% coef()

 ##
 Estimate Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 0.06881825
 0.1111027
 0.6194113
 5.365978e-01

 ## x
 1.99499006
 0.1121363
 17.7907659
 1.379348e-38

Mediation example IV

• To estimate the indirect effect, first fit coef(summary(mod1 <- lm(u ~ x)))

 ##
 Estimate Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 0.07459585
 0.07967631
 0.9362362
 3.506768e-01

 ## x
 1.09975103
 0.08041755
 13.6755105
 4.837012e-28

• Multiply the X-U and U-Y path coefficients (indeff <- coef(mod1)[2] * coef(modelm)[3])

x ## 0.9860241

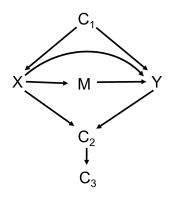
Compare sum of direct and indirect effects to previous total
 effect

(toteff <- coef(modelm)[2] + indeff)</pre>

x ## 1.99499

More complex example I

• If the DAG is



More complex example II


```
set.seed(123456)
n <- 150
c1 <- rnorm(n)
x <- c1 + rnorm(n)
m <- x + rnorm(n)
y <- c1 + x + m + rnorm(n)
c2 <- x + y + rnorm(n)
c3 <- c2 + rnorm(n)</pre>
```

More complex example III

 For the direct effect of X on Y of course the simple model is biased
 coef(summary(modelx <- lm(y ~ x)))

 ##
 Estimate Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 0.07280811
 0.12618137
 0.5770116
 5.648083e-01

 ## x
 2.37476121
 0.08647624
 27.4614312
 5.805841e-60

More complex example IV

• Adjusting for C_1 and M recovers the direct effect as expected $lm(y \sim x + m + c1)$ % summary() %>% coef()

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	0.1115822	0.07946580	1.404154	1.623967e-01
##	x	1.0173919	0.10672719	9.532640	4.795425e-17
##	m	1.0107777	0.07653848	13.206138	1.073170e-26
##	c1	0.8796623	0.12031788	7.311151	1.609465e-11

More complex example V

• Adjusting for either C_2 or C_3 or both induces bias lm(y - x + m + c1 + c2)%>% summary() %>% coef()

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	0.06511859	0.05925209	1.0990092	2.735855e-01
##	x	-0.03128823	0.12467456	-0.2509592	8.022009e-01
##	m	0.47786867	0.07501430	6.3703681	2.349755e-09
##	c1	0.34870404	0.10186449	3.4232148	8.046834e-04
##	c2	0.52432123	0.04807025	10.9073949	1.337696e-20

More complex example VI

• Adjusting for C_3 lm(y ~ x + m + c1 + c3) %>% summary() %>% coef()

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	0.1080981	0.06351287	1.701987	9.090087e-02
##	x	0.2389449	0.12053160	1.982425	4.932154e-02
##	m	0.6772346	0.07122761	9.508036	5.841841e-17
##	c1	0.5322631	0.10339923	5.147650	8.442526e-07
##	c3	0.3557591	0.03891790	9.141270	5.073325e-16

More complex example VII

• Adjusting for both C_2 and C_3 coef(summary(fullmodel <- lm(y - x + m + c1 + c2 + c3)))

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	0.07529289	0.05863517	1.2840910	2.011723e-01
##	x	-0.04845372	0.12324295	-0.3931561	6.947856e-01
##	m	0.49102547	0.07424300	6.6137609	6.835023e-10
##	c1	0.35649550	0.10055884	3.5451432	5.297073e-04
##	c2	0.39564302	0.07470576	5.2960174	4.336211e-07
##	c3	0.12546383	0.05627968	2.2292920	2.734301e-02

More complex example VIII

- Model selection algorithms do not perform well
- They assume the covariates are either independent predictors or confounders
- Backwards selection library(MASS)

More complex example IX

Call: ## lm(formula = y ~ x + m + c1 + c2 + c3)## ## Coefficients: ## (Intercept) c2 c1 х m ## 0.07529 -0.04845 0.49103 0.35650 0.39564 ## c3 ## 0.12546

More complex example X

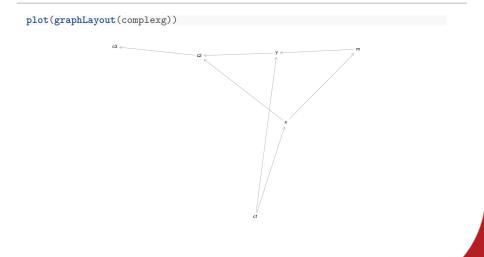
(Intercept) x c2 m c1 c3 ## 0.07529289 -0.04845372 0.39564302 0.49102547 0.35649550 0.12546383

More complex example XI

- Pearl's Simpsons Machine example http://www.dagitty.net/learn/simpson/index.html
 - Stepwise inclusion of covariates changes the sign of the effect at every step

More complex example XII

More complex example XIII



50/67

More complex example XIV

• List testable implications impliedConditionalIndependencies(complexg) %>% print()

```
## c1 _||_ c2 | x, y
## c1 _||_ c3 | c2
## c1 _||_ c3 | x, y
## c1 _||_ m | x
## c2 _||_ m | x, y
## c3 _||_ m | x, y
## c3 _||_ m | c2
## c3 _||_ x | c2
## c3 _||_ y | c1, m
```

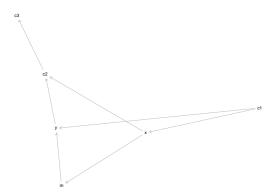
More complex example XV

- Equivalence class
- Two DAGs are Markov equivalent if they represent the same conditional independence relations
 eqdags <- equivalentDAGs(complexg)
 length(eqdags)

[1] 3

More complex example XVI

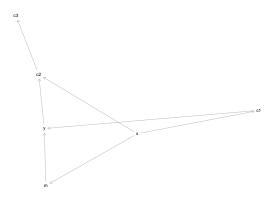
plot(graphLayout(eqdags[[1]]))



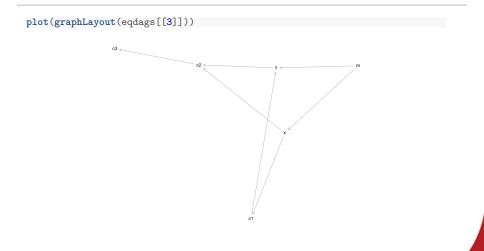
53/67

More complex example XVII

plot(graphLayout(eqdags[[2]]))

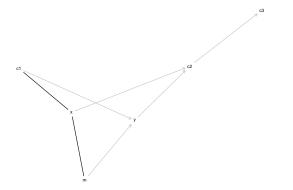


More complex example XVIII



More complex example XIX

eqclass <- equivalenceClass(complexg)
plot(graphLayout(eqclass))</pre>



More complex example XX

 Number of edges that can be reversed without changing the equivalence class
 sum(edges(equivalenceClass(complexg))\$e == "--")

[1] 2

More complex example XXI

• List adjustment sets for effect of interest adjustmentSets(complexg, "x", "y", effect = "direct") %>% print()

```
## { c1, m }
```

• List adjustment sets for total effect adjustmentSets(complexg, "x", "y") %>% print()

{ c1 }

More complex example XXII


```
for(n in names(complexg)){
    for( m in setdiff(descendants(complexg, n ), n)){
        a <- adjustmentSets(complexg, n, m)
        if(length(a) > 0 ){
            cat("The total effect of ",n," on ",m,
                " is identifiable controlling for:\n", sep = "")
            print(a, prefix=" * ")
        }
    }
}
```

```
## The total effect of c1 on v is identifiable controlling for:
## * {}
## The total effect of c1 on c2 is identifiable controlling for:
## * {}
## The total effect of c1 on c3 is identifiable controlling for:
## * {}
## The total effect of c1 on x is identifiable controlling for:
## * {}
## The total effect of c1 on m is identifiable controlling for:
   *
      1
## The total effect of c2 on c3 is identifiable controlling for:
## * {}
## The total effect of m on y is identifiable controlling for:
## * { c1 }
## * { x }
```

More complex example XXIII


```
## The total effect of m on c2 is identifiable controlling for:
## * { x }
## The total effect of m on c3 is identifiable controlling for:
## * { x }
## The total effect of x on m is identifiable controlling for:
## * {}
## The total effect of x on y is identifiable controlling for:
## * { c1 }
## The total effect of x on c2 is identifiable controlling for:
## * { c1 }
## The total effect of x on c3 is identifiable controlling for:
## * { c1 }
## The total effect of y on c2 is identifiable controlling for:
## * { x }
## * { c1, m }
## The total effect of v on c3 is identifiable controlling for:
## * { x }
## * { c1, m }
```

60/67

DAGitty's missing feature

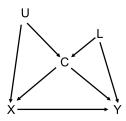
 Pass it correlations between a set of variables (correlations) and generate all possible DAGs

 Apparently this is being developed

Disadvantages of DAGs I

- They do not tell us the functional form of the model
 - What outcome model do we fit, e.g. linear regression/logistic regression etc.?
 - $\circ~$ What parametric form should our variables have, e.g. $X,\,X^2$
- If there is confounding bias we don't know if important
- If there is colliding bias we don't know if important

Disadvantages of DAGs II



- We may even need to trade-off confounding and colliding biases:
 - \circ If U and L both unmeasured
 - $\circ~$ Not adjusting for C- confounding bias
 - Adjusting for C colliding bias
 - We don't know which is worse without doing simulations for our example

Disadvantages of DAGs III

- If we decompose our effect with a mediator we don't know relative sizes of direct and indirect effects
- Difficult to represent interactions on a DAG
- Most realistically complex modelling situations will probably generate multiple plausible DAGs

- Modelling guidelines informed by causal DAGs
 - Adjust for a set of variables sufficient to block all backdoor pathways between the two variables of interest
 - $\circ~$ Do not adjust for colliders or variables caused by colliders
 - If a variable is on the causal pathway adjusting for it will decompose the effect of interest
- Thanks for your attention
- Any questions

Discussion

Hèrnan, Miguel. 2017. "Causal Diagrams: Draw Your Assumptions Before Your Conclusions." https://www.edx.org/course/causal-diagrams-draw-assumptions-harvardx-ph559x.

Munafò, Marcus R, Kate Tilling, Amy E Taylor, David M Evans, and George Davey Smith. 2018. "Collider Scope: When Selection Bias Can Substantially Influence Observed Associations." *International Journal of Epidemiology* 47 (1): 226–35. https://doi.org/10.1093/ije/dyx206.

Pearl, Judea. 1995. "Causal Diagrams for Empirical Research." *Biometrika* 82 (4). [Oxford University Press, Biometrika Trust]: 669–88. http://www.jstor.org/stable/2337329.

References II

Textor, Johannes, Benito van der Zander, Mark S Gilthorpe, Maciej Liśkiewicz, and George TH Ellison. 2016. "Robust Causal Inference Using Directed Acyclic Graphs: The R Package 'Dagitty'." *International Journal of Epidemiology* 45 (6): 1887–94. https://doi.org/10.1093/ije/dyw341.