

Some topics from Mendelian randomization

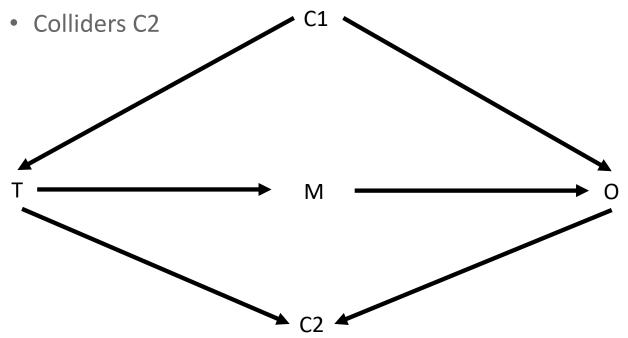
Tom Palmer, Lecturer in Medical Statistics, Department of Mathematics and Statistics tom.palmer@Lancaster.ac.uk

Outline

- Directed Acyclic Graphs for statistical modelling
- Mendelian randomization basics
 - Assumptions
 - Risk difference example
 - Risk ratio example
- Summary

Directed Acyclic Graphs for statistical modelling

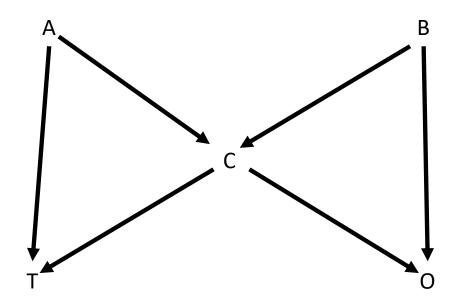
- As long as the DAG is not cyclic the rules of conditional independence hold
- Advantages of DAGs:
 - Good at depicting:
 - Confounding C1
 - Mediation M

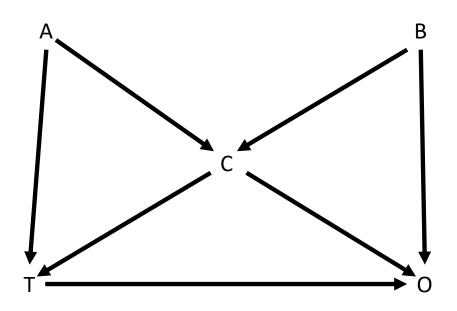


- Good at depicting conditional independence

- Regress O on T and adjust for M
 - if the effect of T does not go to null then you can argue there must be another pathway between T and O

- Given the correct model they can tell us when we have adjusted for "enough" variables.
 - In the terminology of DAGs we must block all backdoor paths between the Treatment and the Outcome

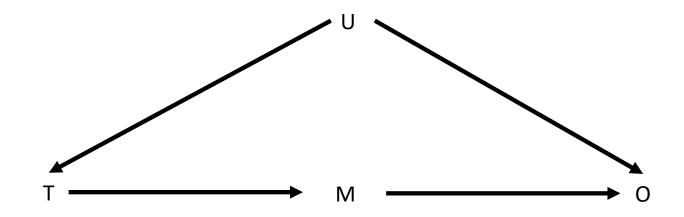




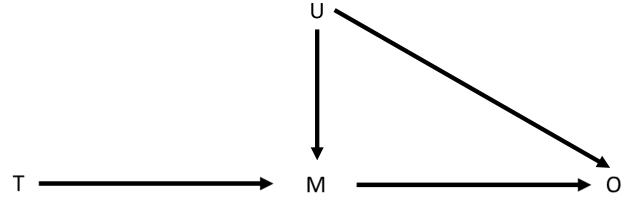
- To estimate the effect of T on O what do we need to adjust for?
- What backdoor paths are there?
 - Starts with an arrow going into T; then arrows can go in either direction
 - Block them by adjusting for variables on them
 - Watch out for induced collider bias

Answer: C and B; or C and B; or A, B, and C.

• They can tell us when certain indirect estimates are very useful



• Imagining unmeasured confounders can tell us the potential weaknesses in our models:



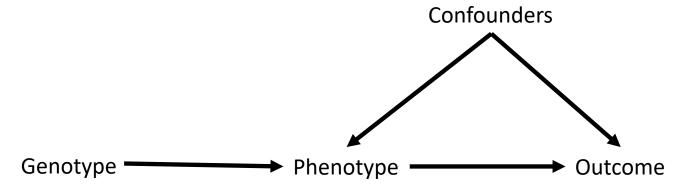
• What happens if we adjust for the mediator?

- Essentially provide a formal mathematical framework for the old statistical modelling guidelines:
 - Adjust for confounders
 - Don't adjust for something on the causal pathway (unless you want to partition the effect into its direct/indirect components)
 - Don't adjust for a consequence of the outcome
- Realistically complex framework of what to adjust for, neither of:
 - brought about a 10% change in treatment effect
 - was statistically significant in the model (but what if not an confounder or independent predictor)

- Disadvantages of DAGs:
 - Don't telling us how big the impact of confounding/collider bias will be (will it actually affect our analysis in a meaningful way)
 - Difficult to represent effect modification (interaction) although some proposals
 - Don't tell us about other structures, e.g. random effects

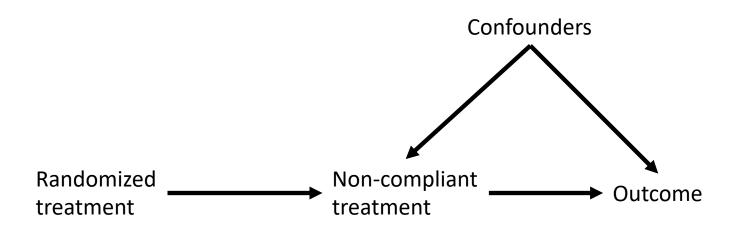
Mendelian randomization

• Davey Smith (2003) realised that genotypes could be used as instrumental variables in epidemiological studies



- Genotype associated with Phenotype
 - robustly, i.e. previous GWAS
- Genotype only affects Outcome through Phenotype
 - Exclusion restriction can be hard to justify
- Genotype independent of all measured and unmeasured confounders
 - The randomization; Gregor Mendel's second law
- Can't test 2 and 3 fully with observational data

- Instrumental variables have been used in several different study types
- Clinical trials

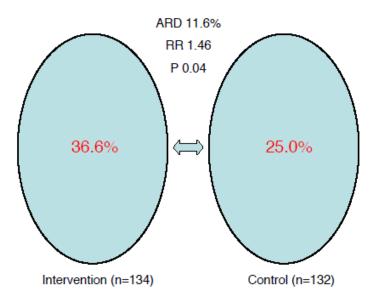


• Randomized variables can occur in economics etc., e.g. draft lotteries for Vietnam war

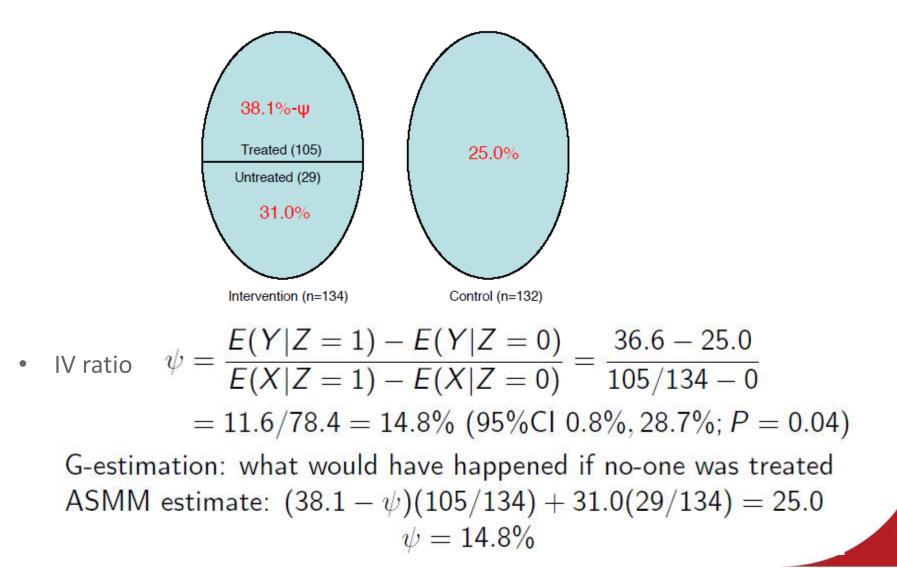
- With individual level data many IV estimators
 - Continuous outcome
 - Two-stage least squares
 - Two-stage residual inclusion estimators
 - Binary outcome
 - Two-stage residual inclusion estimators
 - Structural mean models

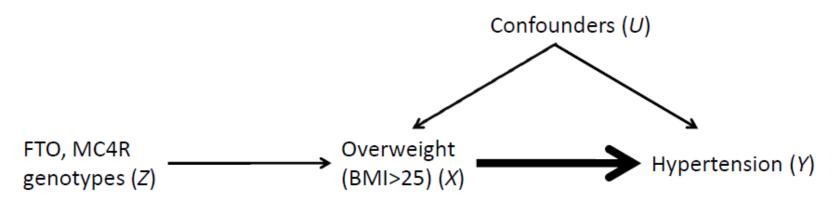
Linear IV / additive structural mean model example University

- Tenhave et al., JASA, 2004
- 266 African American adults with high cholesterol and/or hypertension ۲
- Control group: usual care (nutritional information)
- Intervention: usual care plus audio tapes
- Outcome: beneficial change in cholesterol
- Naïve analysis



• However there was non-compliance in the intervention group



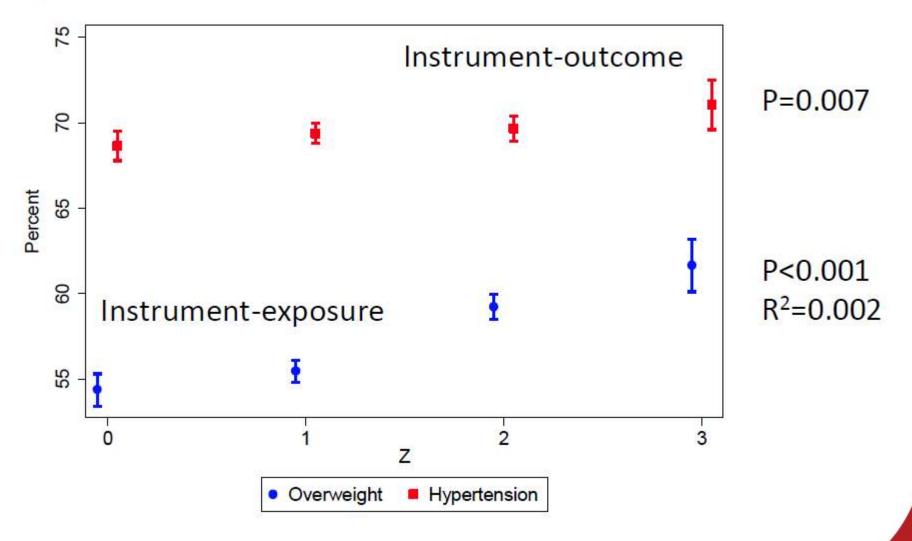


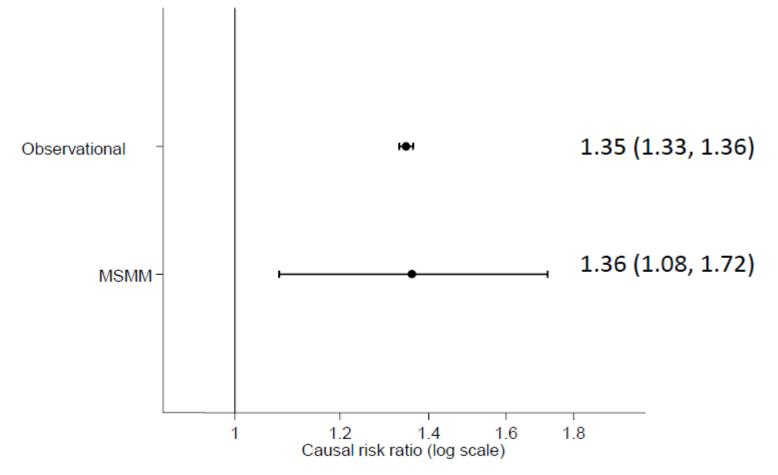
• 'Observational' association between overweight and hypertension

	No Hypertension	Hypertension	Total
Not	10,066	13,909	23,975
Overweight	42%	58%	
Overweight	6,906 22%	24,642 78%	31,548
Total	16,972	38,551	55,523
	31%	69%	χ ² P<0.001

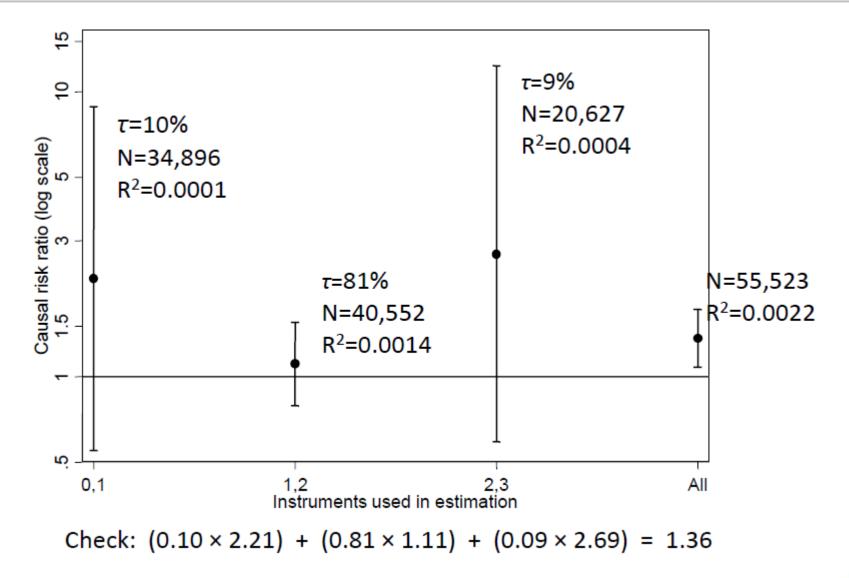
• Risk ratio for hypertension 1.35 (1.32, 1.37)

Exposure (over-weight) & outcome (hypertension) by instrument





MSMM: Hansen over-identification test P = 0.31E[Y(0)] = 0.58 (0.50, 0.65)



Summary

- DAGs provide a realistically complex way of viewing statistical models
- Strengths they can tell us what to adjust for
- Weaknesses not good at showing effect modification
- In observational epidemiology genotypes can be used as instrumental variables
- Allow estimation of causal effects of phenotypes upon disease
- Important differences between estimates from a clinical trial:
 - Cohort studies usually contain wider age of people; and less strict entry criteria
- Estimation of different parameters with individual level data possible
- Recent developments (MR-Egger) use summary data