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Multiplicative SMM

Robins defined the multiplicative SMM as follows:
X exposure/treatment
Y outcome
Z instrument
Y {X = 0} exposure/treatment free potential outcome

log(E [Y |X ,Z ])− log(E [Y {0}|X ,Z ]) = ψX

E [Y |X ,Z ]

E [Y {0}|X ,Z ]
= exp(ψX )

ψ : log causal risk ratio

Rearrange: Y {0} = Y exp(−ψX )
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GMM estimation of MSMM

Under the instrumental variable assumptions:

Y {0} ⊥⊥ Z

Y exp(−ψX ) ⊥⊥ Z

Y exp(−ψX )− Y {0} ⊥⊥ Z

Moment conditions (Clarke et al. Tech rep 2011)

Z=0,1

,2 Over-identified

E [(Y exp(−ψX )− Y {0})1] = 0

E [(Y exp(−ψX )− Y {0})Z1] = 0

E [(Y exp(−ψX )− Y {0})Z2] = 0
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GMM estimation of MSMM

MSMM Stata gmm syntax

gmm (y*exp(-1*x*{psi}) - {ey0}), instruments(z1 z2 z3)
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What is GMM?

Minimises quadratic form: Q = m′W−1m

Estimate
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Alternative estimation approach

Bowden and Vansteelandt, Stats Med, 2010.

Solve estimating equation for ψ

N∑
i=1

Yi exp(−ψXi )(Zi − Z ) = 0
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Asthma data example

Appendix 1 and Clarke and Windmeijer (49)). The MGMM
estimator is implemented in Stata (Stata Corporation,
College Station, Texas) with the command ivpois (55). We
summarize the different IV estimators and the assumptions
required for their consistency in Table 1.

EXAMPLE: MENDELIAN RANDOMIZATION ANALYSIS
OF THE CAUSAL EFFECT OF BMI ON ASTHMA RISK IN
CHILDREN

We applied the estimators described above to a Mendelian
randomization analysis using data from the Avon Longitudinal
Study of Parents and Children (56) (www.bristol.ac.uk/
alspac). In this population-based birth cohort study, investiga-
tors recruited 14,541 pregnant women with expected delivery
dates between April 1991 and December 1992. A total of
13,988 infants survived to at least 1 year of age.

We targeted the causal effect of BMI, assessed at age 7
years, on the risk of physician diagnosis of asthma. A pop-
ulation effect considers the effect on asthma of setting BMI
to x, compared with xþ 1, for all children in the population.
A local effect considers the effect, for a given child, of
changing BMI from its observed level to the reference level
(here we use the sample mean BMI of 16.1). Genotypes of
the rs9939609 polymorphism in the FTO gene were used
as an IV; this polymorphism is robustly associated with
childhood and adult BMI and obesity (57). The 2 alleles
of this FTO polymorphism are denoted A and T, where A
is the risk allele associated with greater BMI, fat mass, and
increased obesity. We assumed an additive genetic model
for FTO genotypes. All analyses were carried out in 4,647
children with complete data on asthma, BMI, and FTO, of
whom 649 (14%) had asthma. Analyses were performed
using Stata, version 11.0 (58). The IV model is shown in
the directed acyclic graph in Figure 3.

Assessment of IV assumptions

We investigated the extent to which FTO genotype was
associated with BMI (IV assumption 1) using the first stage
of the 2-stage estimator (equation 7). The mean increase
in BMI per risk allele was 0.15 (95% confidence interval:
0.07, 0.23); this effect was small in relation to the standard
deviation of BMI of 1.95. The R2 and F statistics from
this regression were 0.003 and 12.7, respectively. Although
the F statistic was greater than the commonly used weak
instrument threshold of 10 (59), the R2 showed that FTO
explained only 0.3% of the variation in BMI.

It is not strictly possible to test assumptions 2 and 3,
as they involve unobservable variables (7, 9). We can find

Table 1. Different Instrumental Variable Estimators and the
Assumptions Required for Consistency

Estimator
(Equation No.)

Target
Parameter

Assumptions
Required for
Consistency

Ratio estimator (5) Population
CRR

Model for Y given
do(X) and U is
log-linear in X and U,
without interaction;
model for X given Z
and U is linear
without interaction,
and X is approximately
normally distributed
(see reference 13).

Ratio estimator (6) Population
COR

Not generally
consistent;
approximately
consistent for rare
diseases under same
assumptions as
ratio estimator of the
population CRR.

2-stage, logistic
second
stage (7, 8)

Population
COR

Same as ratio estimator
of population COR.

2-stage, log-linear
second stage

Population
CRR

Same as ratio estimator
of population CRR.

Control function,
logistic second
stage (9, 10)

COR
conditional
on U

Generally not consistent,
but converges to
LSMM when X is
normally distributed
(see reference 47).

Control function,
log-linear
second stage

Population
CRR

Same as 2-stage
estimator with
log-linear second stage.

MSMM (12) CRR effect
on exposed

Log-linear model for
Y given do(X),
X and Z, no effect
modification by Z.

MSMM (12) Population
CRR

Log-linear model for
Y given do(X) and
U, no effect
modification by U.

LSMM (13, 14) COR effect
on exposed

Logistic model for Y
given do(X), X and
Z, no effect
modification
by Z; association
model for Y given
X and Z has intercept,
unrestricted main
effect of Z and
fitted by maximum
likelihood.

MGMM (15, 16) Population
CRR

Same as MSMM
estimator of the
population CRR.

Abbreviations: COR, causal odds ratio; CRR, causal risk ratio; LSMM,
logistic structural mean model; MGMM, multiplicative generalized
method of moments; MSMM, multiplicative structural mean model.

FTO do(BMI) Asthma

Confounders

FTO BMI Asthma

Confounders

Figure 3. Directed acyclic graph (DAG) for Mendelian randomiza-
tion analysis of fat mass and obesity-associated (FTO) genotype,
body mass index (BMI; weight (kg)/height (m)2), and asthma risk
among children aged 7 years (left) and modified DAG under interven-
tion in BMI, do(BMI) (right), Avon Longitudinal Study of Parents and
Children, 1991–1992.

Instrumental Variable Causal Risk and Odds Ratios 5

 at U
niversity of Bristol on M

ay 10, 2011
aje.oxfordjournals.org

D
ow

nloaded from
 

8 / 37



Asthma data example

Appendix 1 and Clarke and Windmeijer (49)). The MGMM
estimator is implemented in Stata (Stata Corporation,
College Station, Texas) with the command ivpois (55). We
summarize the different IV estimators and the assumptions
required for their consistency in Table 1.

EXAMPLE: MENDELIAN RANDOMIZATION ANALYSIS
OF THE CAUSAL EFFECT OF BMI ON ASTHMA RISK IN
CHILDREN

We applied the estimators described above to a Mendelian
randomization analysis using data from the Avon Longitudinal
Study of Parents and Children (56) (www.bristol.ac.uk/
alspac). In this population-based birth cohort study, investiga-
tors recruited 14,541 pregnant women with expected delivery
dates between April 1991 and December 1992. A total of
13,988 infants survived to at least 1 year of age.

We targeted the causal effect of BMI, assessed at age 7
years, on the risk of physician diagnosis of asthma. A pop-
ulation effect considers the effect on asthma of setting BMI
to x, compared with xþ 1, for all children in the population.
A local effect considers the effect, for a given child, of
changing BMI from its observed level to the reference level
(here we use the sample mean BMI of 16.1). Genotypes of
the rs9939609 polymorphism in the FTO gene were used
as an IV; this polymorphism is robustly associated with
childhood and adult BMI and obesity (57). The 2 alleles
of this FTO polymorphism are denoted A and T, where A
is the risk allele associated with greater BMI, fat mass, and
increased obesity. We assumed an additive genetic model
for FTO genotypes. All analyses were carried out in 4,647
children with complete data on asthma, BMI, and FTO, of
whom 649 (14%) had asthma. Analyses were performed
using Stata, version 11.0 (58). The IV model is shown in
the directed acyclic graph in Figure 3.

Assessment of IV assumptions

We investigated the extent to which FTO genotype was
associated with BMI (IV assumption 1) using the first stage
of the 2-stage estimator (equation 7). The mean increase
in BMI per risk allele was 0.15 (95% confidence interval:
0.07, 0.23); this effect was small in relation to the standard
deviation of BMI of 1.95. The R2 and F statistics from
this regression were 0.003 and 12.7, respectively. Although
the F statistic was greater than the commonly used weak
instrument threshold of 10 (59), the R2 showed that FTO
explained only 0.3% of the variation in BMI.

It is not strictly possible to test assumptions 2 and 3,
as they involve unobservable variables (7, 9). We can find

Table 1. Different Instrumental Variable Estimators and the
Assumptions Required for Consistency

Estimator
(Equation No.)

Target
Parameter

Assumptions
Required for
Consistency

Ratio estimator (5) Population
CRR

Model for Y given
do(X) and U is
log-linear in X and U,
without interaction;
model for X given Z
and U is linear
without interaction,
and X is approximately
normally distributed
(see reference 13).

Ratio estimator (6) Population
COR

Not generally
consistent;
approximately
consistent for rare
diseases under same
assumptions as
ratio estimator of the
population CRR.

2-stage, logistic
second
stage (7, 8)

Population
COR

Same as ratio estimator
of population COR.

2-stage, log-linear
second stage

Population
CRR

Same as ratio estimator
of population CRR.

Control function,
logistic second
stage (9, 10)

COR
conditional
on U

Generally not consistent,
but converges to
LSMM when X is
normally distributed
(see reference 47).

Control function,
log-linear
second stage

Population
CRR

Same as 2-stage
estimator with
log-linear second stage.

MSMM (12) CRR effect
on exposed

Log-linear model for
Y given do(X),
X and Z, no effect
modification by Z.

MSMM (12) Population
CRR

Log-linear model for
Y given do(X) and
U, no effect
modification by U.

LSMM (13, 14) COR effect
on exposed

Logistic model for Y
given do(X), X and
Z, no effect
modification
by Z; association
model for Y given
X and Z has intercept,
unrestricted main
effect of Z and
fitted by maximum
likelihood.

MGMM (15, 16) Population
CRR

Same as MSMM
estimator of the
population CRR.

Abbreviations: COR, causal odds ratio; CRR, causal risk ratio; LSMM,
logistic structural mean model; MGMM, multiplicative generalized
method of moments; MSMM, multiplicative structural mean model.

FTO do(BMI) Asthma

Confounders

FTO BMI Asthma

Confounders

Figure 3. Directed acyclic graph (DAG) for Mendelian randomiza-
tion analysis of fat mass and obesity-associated (FTO) genotype,
body mass index (BMI; weight (kg)/height (m)2), and asthma risk
among children aged 7 years (left) and modified DAG under interven-
tion in BMI, do(BMI) (right), Avon Longitudinal Study of Parents and
Children, 1991–1992.

Instrumental Variable Causal Risk and Odds Ratios 5

 at U
niversity of Bristol on M

ay 10, 2011
aje.oxfordjournals.org

D
ow

nloaded from
 

Appendix 1 and Clarke and Windmeijer (49)). The MGMM
estimator is implemented in Stata (Stata Corporation,
College Station, Texas) with the command ivpois (55). We
summarize the different IV estimators and the assumptions
required for their consistency in Table 1.

EXAMPLE: MENDELIAN RANDOMIZATION ANALYSIS
OF THE CAUSAL EFFECT OF BMI ON ASTHMA RISK IN
CHILDREN

We applied the estimators described above to a Mendelian
randomization analysis using data from the Avon Longitudinal
Study of Parents and Children (56) (www.bristol.ac.uk/
alspac). In this population-based birth cohort study, investiga-
tors recruited 14,541 pregnant women with expected delivery
dates between April 1991 and December 1992. A total of
13,988 infants survived to at least 1 year of age.

We targeted the causal effect of BMI, assessed at age 7
years, on the risk of physician diagnosis of asthma. A pop-
ulation effect considers the effect on asthma of setting BMI
to x, compared with xþ 1, for all children in the population.
A local effect considers the effect, for a given child, of
changing BMI from its observed level to the reference level
(here we use the sample mean BMI of 16.1). Genotypes of
the rs9939609 polymorphism in the FTO gene were used
as an IV; this polymorphism is robustly associated with
childhood and adult BMI and obesity (57). The 2 alleles
of this FTO polymorphism are denoted A and T, where A
is the risk allele associated with greater BMI, fat mass, and
increased obesity. We assumed an additive genetic model
for FTO genotypes. All analyses were carried out in 4,647
children with complete data on asthma, BMI, and FTO, of
whom 649 (14%) had asthma. Analyses were performed
using Stata, version 11.0 (58). The IV model is shown in
the directed acyclic graph in Figure 3.

Assessment of IV assumptions

We investigated the extent to which FTO genotype was
associated with BMI (IV assumption 1) using the first stage
of the 2-stage estimator (equation 7). The mean increase
in BMI per risk allele was 0.15 (95% confidence interval:
0.07, 0.23); this effect was small in relation to the standard
deviation of BMI of 1.95. The R2 and F statistics from
this regression were 0.003 and 12.7, respectively. Although
the F statistic was greater than the commonly used weak
instrument threshold of 10 (59), the R2 showed that FTO
explained only 0.3% of the variation in BMI.

It is not strictly possible to test assumptions 2 and 3,
as they involve unobservable variables (7, 9). We can find

Table 1. Different Instrumental Variable Estimators and the
Assumptions Required for Consistency

Estimator
(Equation No.)

Target
Parameter

Assumptions
Required for
Consistency

Ratio estimator (5) Population
CRR

Model for Y given
do(X) and U is
log-linear in X and U,
without interaction;
model for X given Z
and U is linear
without interaction,
and X is approximately
normally distributed
(see reference 13).

Ratio estimator (6) Population
COR

Not generally
consistent;
approximately
consistent for rare
diseases under same
assumptions as
ratio estimator of the
population CRR.

2-stage, logistic
second
stage (7, 8)

Population
COR

Same as ratio estimator
of population COR.

2-stage, log-linear
second stage

Population
CRR

Same as ratio estimator
of population CRR.

Control function,
logistic second
stage (9, 10)

COR
conditional
on U

Generally not consistent,
but converges to
LSMM when X is
normally distributed
(see reference 47).

Control function,
log-linear
second stage

Population
CRR

Same as 2-stage
estimator with
log-linear second stage.

MSMM (12) CRR effect
on exposed

Log-linear model for
Y given do(X),
X and Z, no effect
modification by Z.

MSMM (12) Population
CRR

Log-linear model for
Y given do(X) and
U, no effect
modification by U.

LSMM (13, 14) COR effect
on exposed

Logistic model for Y
given do(X), X and
Z, no effect
modification
by Z; association
model for Y given
X and Z has intercept,
unrestricted main
effect of Z and
fitted by maximum
likelihood.

MGMM (15, 16) Population
CRR

Same as MSMM
estimator of the
population CRR.

Abbreviations: COR, causal odds ratio; CRR, causal risk ratio; LSMM,
logistic structural mean model; MGMM, multiplicative generalized
method of moments; MSMM, multiplicative structural mean model.

FTO do(BMI) Asthma

Confounders

FTO BMI Asthma

Confounders

Figure 3. Directed acyclic graph (DAG) for Mendelian randomiza-
tion analysis of fat mass and obesity-associated (FTO) genotype,
body mass index (BMI; weight (kg)/height (m)2), and asthma risk
among children aged 7 years (left) and modified DAG under interven-
tion in BMI, do(BMI) (right), Avon Longitudinal Study of Parents and
Children, 1991–1992.

Instrumental Variable Causal Risk and Odds Ratios 5

 at U
niversity of Bristol on M

ay 10, 2011
aje.oxfordjournals.org

D
ow

nloaded from
 

8 / 37



Asthma data example

support for assumption 2 by investigating whether FTO
genotype is independent of measured covariates that might
confound the association between BMI and asthma. Results
from these analyses provided little evidence for such associ-
ations (Table 2). The plausibility of assumption 3 would ide-

ally be justified by biologic knowledge of the functionality of
the FTO gene, but research on this topic is not yet completed
(60). Finally, there was some evidence that the association of
BMI with asthmawas stronger in girls than in boys (P¼ 0.044
for interaction in a logistic regression), which would violate
the assumption of no effect modification underlying all esti-
mators; from similar checks, we found little evidence of effect
modification by other measured covariates.

IV estimates of the causal effect of BMI on asthma risk

The associational estimates of the COR obtained from
standard logistic regression models corresponded to 6%
and 8% increases in the odds of asthma per 1-unit increase
in BMI in analyses unadjusted and adjusted for possible
confounders, respectively (Table 3). These estimates had
narrow confidence intervals in comparison with the wide
confidence intervals about all IV estimates, the latter being
due to the small proportion of the variation in BMI ex-
plained by FTO.

Under IV assumptions, a test of the instrument-outcome
association is a test for the presence of a causal effect of the
phenotype on the outcome. The FTO-asthma odds ratio was
1.06 (P ¼ 0.372), so there was no strong evidence against
the null hypothesis of no causal effect of BMI on asthma.
The ratio estimate of the COR was 1.45, identical to the 2-
stage estimate as expected. The control function estimate of
the COR was 1.44. These estimates had comparably wide
confidence intervals. The ratio estimate of the CRR was
1.37, identical to the 2-stage and control function estimates
and also with wide confidence intervals. The LSMM esti-
mate of the COR was 1.64 with a very wide confidence
interval.

The MSMM and MGMM estimates of the CRR were
equal, as we expected and as we show in Appendix 1, but
were in the opposite direction (CRR ¼ 0.81) to the other IV
estimates. The bootstrapped confidence intervals of these
estimates spanned the null and overlapped considerably
with those of the other estimates. We also estimated the
MGMM confidence interval using a robust asymptotic stan-
dard error, which was slightly narrower (95% confidence
interval: 0.63, 1.05).

Table 2. Distribution of Asthma and Possible Confounders by Fat Mass and Obesity-Associated (FTO) Genotype (rs9939609) in Children Aged
7 Years, Avon Longitudinal Study of Parents and Children, 1991–1992

Total No.
TT AT AA P Value

From x2 TestNo. % No. % No. %

No. and % of participants 4,647 1,699 37 2,220 48 728 16 0.95a

Asthma (yes) 4,647 234 13.8 302 13.6 113 15.5 0.41

Female sex 4,647 832 49 1,070 48 386 53 0.08

Low birth weight 4,594 75 4 80 4 36 5 0.21

Parental education (less than university degree) 4,593 893 54 1,214 56 390 55 0.44

Prenatal smoking 4,579 404 24 562 26 167 23 0.30

Postnatal smoking 4,407 270 17 390 19 115 17 0.23

Low parental social class 3,974 211 15 295 15 82 13 0.41

a Test for Hardy-Weinberg equilibrium.

Table 3. Instrumental Variable Estimates of the Causal Odds Ratio
and Causal Risk Ratio for the Effect of Body Mass Index on Asthma
Risk, Avon Longitudinal Study of Parents and Children, 1991–1992

COR or
CRR

95% CI

Standard logistic regression analysis

Unadjusted odds ratio 1.06 1.02, 1.10

Adjusteda odds ratio 1.08 1.03, 1.13

Wald/ratio estimatorb

CRR 1.37 0.64, 2.96

COR 1.45 0.65, 3.43

2-stage estimatorc

CRR 1.37 0.68, 2.78

COR 1.45 0.64, 3.29

Control functionc

CRR 1.37 0.68, 2.76

COR 1.44 0.63, 3.28

Logistic structural mean modeld

COR 1.64 0.29, 9.31

Multiplicative structural mean modeld

CRR 0.81 0.44, 1.48

Multiplicative generalized
method of momentsd

CRR 0.81 0.44, 1.48

Abbreviations: CI, confidence interval; COR, causal odds ratio;
CRR, causal risk ratio.

a Adjusted for sex, birth weight, prenatal maternal smoking, post-
natal maternal smoking, maternal education, and head-of-household
social class.

b The 95% CI was based on the delta method standard error of the
ratio of 2 means.

c The 95% CIs were based on robust standard errors.
d The 95% CIs were based on bootstrapped standard errors.
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Asthma data example
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Asthma data example

I Possible explanation for MSMM point estimate < 1

I Interaction between BMI and FTO genotype (p = 0.038)
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Asthma data example

I Possible explanation for MSMM point estimate < 1
I Interaction between BMI and FTO genotype (p = 0.038)

The different direction of effect of the MSMM/MGMM
estimates

For the ratio estimator, the FTO-BMI association (the
denominator in equations 5 and 6) is estimated in the whole
sample and is positive. Similarly, the 2-stage and control
function estimators base the predictions of BMI from
genotype on the whole sample (equation 7). In contrast,
the MSMM/MGMM estimator is based on a single model
for the joint relation between genotype, BMI, and asthma.
Nonasthmatics (those for whom y ¼ 0) only contribute to
the mean genotype !Z in the MGMM/MSMM estimating
equations (equations 12, 15, and 16).

Therefore, we examined the associational relation between
BMI, FTO genotype, and asthma status (Figure 4). Mean
BMI increased from the TT genotype to the AA genotype
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status on BMI, FTO, and their interaction, which gave some
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To investigate this issue further, we performed simula-
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mators of the CRR, in data that were generated with and
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correct coverage in the other scenarios.
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Figure 4. Mean body mass index (weight (kg)/height (m)2), denoted by diamonds, according to fat mass and obesity-associated (FTO) genotype
(rs9939609) for A) asthmatic and B) nonasthmatic children aged 7 years, Avon Longitudinal Study of Parents and Children, 1991–1992. Bars, 95%
confidence interval.
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Asthma data example

I This associational interaction could result from an interaction
between FTO and unobserved confounders

I or could be a chance finding

assumptions of various such estimators. We found that
there are essentially 2 classes of estimators: those that make
distributional assumptions about the exposure/phenotype
(ratio, 2-stage, control function) and those that avoid such
assumptions (SMMs).

We demonstrated the equivalence of the MSMM and
MGMM estimators of the CRR, which has been noted
previously (48, 49). Additional IVestimators exist: for exam-
ple, Robins and Rotnitzky (46) proposed an alternative esti-
mator of theCORbasedon anSMM.Estimators using a probit
link have convenient mathematical properties but do not eas-
ily lead to an estimate of the CRR or COR (39). GMM esti-
mators of the CRR and COR using an additive moment
condition exist, but the underlyingmodels seem less plausible
than those of the MGMM estimator (12, 48, 51, 61, 62).

We compared the IV estimators in an example data set
and found that the MSMM and MGMM estimates of the
CRR were below 1, whereas the other estimates of the
CRR and COR were above 1. We explained this through
an associational interaction between FTO and BMI with
asthma in our data. This interaction may have arisen by
chance, or it could have been induced by an interaction
between the effects of FTO genotype and an unmeasured
confounding variable on BMI. In simulations including such
an interaction, we found a negative correlation between
the MGMM and 2-stage estimates. Since an associational
interaction is not excluded by the IV assumptions, it is not
the case, as some authors have suggested (12), that different
IV estimators will always estimate the same direction of
effect. Despite the striking differences in both the magnitude
and direction of the different IV estimates, their confidence
intervals overlapped considerably.

Although we focused on methods that can handle contin-
uous exposures/phenotypes, epidemiologists are often inter-
ested in using IV methods for binary exposure variables. A
particular example is when the instrument is randomization
to one of 2 treatments, and a binary X represents the treat-
ment that is actually received (17). In this situation, the
ratio, 2-stage, and control function estimators are not con-
sistent for any causal risk ratio or odds ratio and thus should
not be used (13). The MSMM/MGMM estimators do not
make distributional assumptions about X and can be used
to estimate causal effects such as the effect of treatment on
the treated or exposure on the exposed. An alternative ap-
proach targets causal effects of X on Y within the latent
(unobservable) class of compliers. Consistent estimation
of complier causal effects on the risk difference or risk ratio
scale is straightforward under the ‘‘monotonicity’’ assump-
tion that there are no defiers (persons who only take treat-
ment when randomized to the control group) (9, 26, 27);
estimation of complier causal effects on the odds ratio scale
is more problematic (49). The standard intention-to-treat es-
timate of the risk difference or risk ratio will point in the
same direction as the effect of treatment on the compliers,
providing that there are no defiers.

All IV estimators presented here rely on a version of a
structural ‘‘no effect modification’’ assumption involving
the unobserved confounders, rather than the ‘‘no defiers’’
assumption used to justify estimation of complier causal
effects. Both sets of assumptions are impossible to test from

Table 4. Results of Simulations Comparing the Multiplicative
Generalized Method of Moments and 2-Stage Estimators of the
Causal Risk Ratio

2-Stage Estimate
for Log CRR (MCE)

MGMM Estimate
for Log CRR (MCE)

Scenario 1:
no causal
effect with
interaction

Mean bias !0.007 (0.0046) 0.009 (0.0094)

MSE 0.021 (0.0010) 0.088 (0.0042)

Coverage 0.952 (0.0068) 0.964 (0.0059)

Correlation
between
estimates

!0.23

% of estimates
on opposite
sides of the
CRR of 1

64.1

Scenario 2:
causal
effect with
interaction

Mean bias !0.206 (0.0042) !0.146 (0.0100)

MSE 0.060 (0.0019) 0.120 (0.0055)

Coverage 0.674 (0.0148) 0.919 (0.0086)

Correlation
between
estimates

!0.12

% of estimates
on opposite
sides of the
CRR of 1.2

35.9

Scenario 3:
no causal
effect with no
interaction

Mean bias !0.005 (0.0049) !0.001 (0.0053)

MSE 0.024 (0.0010) 0.029 (0.0018)

Coverage 0.942 (0.0074) 0.964 (0.0059)

Correlation
between
estimates

0.88

% of estimates
on opposite
sides of the
CRR of 1

7.3

Scenario 4:
causal effect
with no
interaction

Mean bias 0.003 (0.0043) 0.003 (0.0049)

MSE 0.018 (0.0009) 0.024 (0.0014)

Coverage 0.954 (0.0066) 0.964 (0.0059)

Correlation
between
estimates

0.82

% of estimates
on opposite
sides of the
CRR of 1.2

15

Abbreviations: CRR, causal risk ratio; MCE, Monte Carlo error;
MGMM, multiplicative generalized method of moments; MSE, mean
squared error.
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I This associational interaction could result from an interaction
between FTO and unobserved confounders

I or could be a chance finding

assumptions of various such estimators. We found that
there are essentially 2 classes of estimators: those that make
distributional assumptions about the exposure/phenotype
(ratio, 2-stage, control function) and those that avoid such
assumptions (SMMs).

We demonstrated the equivalence of the MSMM and
MGMM estimators of the CRR, which has been noted
previously (48, 49). Additional IVestimators exist: for exam-
ple, Robins and Rotnitzky (46) proposed an alternative esti-
mator of theCORbasedon anSMM.Estimators using a probit
link have convenient mathematical properties but do not eas-
ily lead to an estimate of the CRR or COR (39). GMM esti-
mators of the CRR and COR using an additive moment
condition exist, but the underlyingmodels seem less plausible
than those of the MGMM estimator (12, 48, 51, 61, 62).

We compared the IV estimators in an example data set
and found that the MSMM and MGMM estimates of the
CRR were below 1, whereas the other estimates of the
CRR and COR were above 1. We explained this through
an associational interaction between FTO and BMI with
asthma in our data. This interaction may have arisen by
chance, or it could have been induced by an interaction
between the effects of FTO genotype and an unmeasured
confounding variable on BMI. In simulations including such
an interaction, we found a negative correlation between
the MGMM and 2-stage estimates. Since an associational
interaction is not excluded by the IV assumptions, it is not
the case, as some authors have suggested (12), that different
IV estimators will always estimate the same direction of
effect. Despite the striking differences in both the magnitude
and direction of the different IV estimates, their confidence
intervals overlapped considerably.

Although we focused on methods that can handle contin-
uous exposures/phenotypes, epidemiologists are often inter-
ested in using IV methods for binary exposure variables. A
particular example is when the instrument is randomization
to one of 2 treatments, and a binary X represents the treat-
ment that is actually received (17). In this situation, the
ratio, 2-stage, and control function estimators are not con-
sistent for any causal risk ratio or odds ratio and thus should
not be used (13). The MSMM/MGMM estimators do not
make distributional assumptions about X and can be used
to estimate causal effects such as the effect of treatment on
the treated or exposure on the exposed. An alternative ap-
proach targets causal effects of X on Y within the latent
(unobservable) class of compliers. Consistent estimation
of complier causal effects on the risk difference or risk ratio
scale is straightforward under the ‘‘monotonicity’’ assump-
tion that there are no defiers (persons who only take treat-
ment when randomized to the control group) (9, 26, 27);
estimation of complier causal effects on the odds ratio scale
is more problematic (49). The standard intention-to-treat es-
timate of the risk difference or risk ratio will point in the
same direction as the effect of treatment on the compliers,
providing that there are no defiers.

All IV estimators presented here rely on a version of a
structural ‘‘no effect modification’’ assumption involving
the unobserved confounders, rather than the ‘‘no defiers’’
assumption used to justify estimation of complier causal
effects. Both sets of assumptions are impossible to test from

Table 4. Results of Simulations Comparing the Multiplicative
Generalized Method of Moments and 2-Stage Estimators of the
Causal Risk Ratio

2-Stage Estimate
for Log CRR (MCE)

MGMM Estimate
for Log CRR (MCE)

Scenario 1:
no causal
effect with
interaction

Mean bias !0.007 (0.0046) 0.009 (0.0094)

MSE 0.021 (0.0010) 0.088 (0.0042)

Coverage 0.952 (0.0068) 0.964 (0.0059)

Correlation
between
estimates

!0.23

% of estimates
on opposite
sides of the
CRR of 1

64.1

Scenario 2:
causal
effect with
interaction

Mean bias !0.206 (0.0042) !0.146 (0.0100)

MSE 0.060 (0.0019) 0.120 (0.0055)

Coverage 0.674 (0.0148) 0.919 (0.0086)
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estimates
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no causal
effect with no
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estimates
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% of estimates
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Scenario 4:
causal effect
with no
interaction

Mean bias 0.003 (0.0043) 0.003 (0.0049)

MSE 0.018 (0.0009) 0.024 (0.0014)

Coverage 0.954 (0.0066) 0.964 (0.0059)

Correlation
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estimates
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Abbreviations: CRR, causal risk ratio; MCE, Monte Carlo error;
MGMM, multiplicative generalized method of moments; MSE, mean
squared error.
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assumptions of various such estimators. We found that
there are essentially 2 classes of estimators: those that make
distributional assumptions about the exposure/phenotype
(ratio, 2-stage, control function) and those that avoid such
assumptions (SMMs).

We demonstrated the equivalence of the MSMM and
MGMM estimators of the CRR, which has been noted
previously (48, 49). Additional IVestimators exist: for exam-
ple, Robins and Rotnitzky (46) proposed an alternative esti-
mator of theCORbasedon anSMM.Estimators using a probit
link have convenient mathematical properties but do not eas-
ily lead to an estimate of the CRR or COR (39). GMM esti-
mators of the CRR and COR using an additive moment
condition exist, but the underlyingmodels seem less plausible
than those of the MGMM estimator (12, 48, 51, 61, 62).

We compared the IV estimators in an example data set
and found that the MSMM and MGMM estimates of the
CRR were below 1, whereas the other estimates of the
CRR and COR were above 1. We explained this through
an associational interaction between FTO and BMI with
asthma in our data. This interaction may have arisen by
chance, or it could have been induced by an interaction
between the effects of FTO genotype and an unmeasured
confounding variable on BMI. In simulations including such
an interaction, we found a negative correlation between
the MGMM and 2-stage estimates. Since an associational
interaction is not excluded by the IV assumptions, it is not
the case, as some authors have suggested (12), that different
IV estimators will always estimate the same direction of
effect. Despite the striking differences in both the magnitude
and direction of the different IV estimates, their confidence
intervals overlapped considerably.

Although we focused on methods that can handle contin-
uous exposures/phenotypes, epidemiologists are often inter-
ested in using IV methods for binary exposure variables. A
particular example is when the instrument is randomization
to one of 2 treatments, and a binary X represents the treat-
ment that is actually received (17). In this situation, the
ratio, 2-stage, and control function estimators are not con-
sistent for any causal risk ratio or odds ratio and thus should
not be used (13). The MSMM/MGMM estimators do not
make distributional assumptions about X and can be used
to estimate causal effects such as the effect of treatment on
the treated or exposure on the exposed. An alternative ap-
proach targets causal effects of X on Y within the latent
(unobservable) class of compliers. Consistent estimation
of complier causal effects on the risk difference or risk ratio
scale is straightforward under the ‘‘monotonicity’’ assump-
tion that there are no defiers (persons who only take treat-
ment when randomized to the control group) (9, 26, 27);
estimation of complier causal effects on the odds ratio scale
is more problematic (49). The standard intention-to-treat es-
timate of the risk difference or risk ratio will point in the
same direction as the effect of treatment on the compliers,
providing that there are no defiers.

All IV estimators presented here rely on a version of a
structural ‘‘no effect modification’’ assumption involving
the unobserved confounders, rather than the ‘‘no defiers’’
assumption used to justify estimation of complier causal
effects. Both sets of assumptions are impossible to test from

Table 4. Results of Simulations Comparing the Multiplicative
Generalized Method of Moments and 2-Stage Estimators of the
Causal Risk Ratio

2-Stage Estimate
for Log CRR (MCE)

MGMM Estimate
for Log CRR (MCE)

Scenario 1:
no causal
effect with
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Mean bias !0.007 (0.0046) 0.009 (0.0094)

MSE 0.021 (0.0010) 0.088 (0.0042)

Coverage 0.952 (0.0068) 0.964 (0.0059)

Correlation
between
estimates

!0.23

% of estimates
on opposite
sides of the
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64.1
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causal
effect with
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estimates
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Scenario 3:
no causal
effect with no
interaction

Mean bias !0.005 (0.0049) !0.001 (0.0053)

MSE 0.024 (0.0010) 0.029 (0.0018)

Coverage 0.942 (0.0074) 0.964 (0.0059)
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between
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Scenario 4:
causal effect
with no
interaction

Mean bias 0.003 (0.0043) 0.003 (0.0049)

MSE 0.018 (0.0009) 0.024 (0.0014)

Coverage 0.954 (0.0066) 0.964 (0.0059)

Correlation
between
estimates
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% of estimates
on opposite
sides of the
CRR of 1.2
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Abbreviations: CRR, causal risk ratio; MCE, Monte Carlo error;
MGMM, multiplicative generalized method of moments; MSE, mean
squared error.
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between FTO and unobserved confounders
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assumptions of various such estimators. We found that
there are essentially 2 classes of estimators: those that make
distributional assumptions about the exposure/phenotype
(ratio, 2-stage, control function) and those that avoid such
assumptions (SMMs).

We demonstrated the equivalence of the MSMM and
MGMM estimators of the CRR, which has been noted
previously (48, 49). Additional IVestimators exist: for exam-
ple, Robins and Rotnitzky (46) proposed an alternative esti-
mator of theCORbasedon anSMM.Estimators using a probit
link have convenient mathematical properties but do not eas-
ily lead to an estimate of the CRR or COR (39). GMM esti-
mators of the CRR and COR using an additive moment
condition exist, but the underlyingmodels seem less plausible
than those of the MGMM estimator (12, 48, 51, 61, 62).

We compared the IV estimators in an example data set
and found that the MSMM and MGMM estimates of the
CRR were below 1, whereas the other estimates of the
CRR and COR were above 1. We explained this through
an associational interaction between FTO and BMI with
asthma in our data. This interaction may have arisen by
chance, or it could have been induced by an interaction
between the effects of FTO genotype and an unmeasured
confounding variable on BMI. In simulations including such
an interaction, we found a negative correlation between
the MGMM and 2-stage estimates. Since an associational
interaction is not excluded by the IV assumptions, it is not
the case, as some authors have suggested (12), that different
IV estimators will always estimate the same direction of
effect. Despite the striking differences in both the magnitude
and direction of the different IV estimates, their confidence
intervals overlapped considerably.

Although we focused on methods that can handle contin-
uous exposures/phenotypes, epidemiologists are often inter-
ested in using IV methods for binary exposure variables. A
particular example is when the instrument is randomization
to one of 2 treatments, and a binary X represents the treat-
ment that is actually received (17). In this situation, the
ratio, 2-stage, and control function estimators are not con-
sistent for any causal risk ratio or odds ratio and thus should
not be used (13). The MSMM/MGMM estimators do not
make distributional assumptions about X and can be used
to estimate causal effects such as the effect of treatment on
the treated or exposure on the exposed. An alternative ap-
proach targets causal effects of X on Y within the latent
(unobservable) class of compliers. Consistent estimation
of complier causal effects on the risk difference or risk ratio
scale is straightforward under the ‘‘monotonicity’’ assump-
tion that there are no defiers (persons who only take treat-
ment when randomized to the control group) (9, 26, 27);
estimation of complier causal effects on the odds ratio scale
is more problematic (49). The standard intention-to-treat es-
timate of the risk difference or risk ratio will point in the
same direction as the effect of treatment on the compliers,
providing that there are no defiers.

All IV estimators presented here rely on a version of a
structural ‘‘no effect modification’’ assumption involving
the unobserved confounders, rather than the ‘‘no defiers’’
assumption used to justify estimation of complier causal
effects. Both sets of assumptions are impossible to test from
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Asthma data example – 2 solutions to estimating equation

these random variables implies that the covariance between
them is 0. The GMM/SMM estimate is taken as the value of
the causal parameter, which equates the sample covariance be-
tween these variables in the data set to 0.We refer to the sample
covariance as an “estimating function” rather than an objective
function, because it is equated to 0 and not maximized or min-
imized. Parameter estimates can be obtained by evaluating the
estimating function at various values of the parameter to find
the value for which the estimating function is equal to 0 (a grid-
search algorithm), or via an optimization routine.

Moment conditions for the estimation of the CRR using
multiplicative structural models can be written in 2 equiva-
lent ways owing to the 2 traditions (i.e., GMM and SMM)
in which these approaches were developed. We consider
2 different sets of estimating equations depending on the
error structure. First, assuming a structural model with multi-
plicative error, the GMM estimating equations are given by

X

i

yi expð"β1xiÞ " β0 ¼ 0

and (1)
X

i

gi ðyi expð"β1xiÞ " β0Þ ¼ 0;

where the parameter β1 is the log CRR, and the summation is
across individuals indexed by i (19, 20). The parameter β0
corresponds to the probability of the outcome at X = 0,
which should be similar in value to the prevalence of the out-
come if X = 0 corresponds to a meaningful reference value for
the exposure. We refer to this method as multiplicative gen-
eralized method of moments (MGMM).

Second, we can assume a structural model with additive
error. The GMM estimating equations are

X

i

yi " expðβ00 þ β1xiÞ ¼ 0

and (2)
X

i

gi ðyi " expðβ00 þ β1xiÞÞ ¼ 0:

We refer to this method as the linear generalized method of
moments (LGMM) (22, 23). If the models are correctly spec-
ified, and in the absence of confounding, both theMGMMand
LGMM methods will consistently estimate the same CRR.

Alternatively, the MGMM estimator for β1 can be obtained
in a SMM framework using a single estimating equation,

X

i

yi expð"β1xiÞðgi " !gÞ ¼ 0 ð3Þ

where !g is the average value of G in the population. The sets
of estimating equations 1 and 3 are equivalent when there are
no covariates, in that the same estimate of β1 is obtained from
both approaches (20). Hence, although we refer to the meth-
ods as MGMM and LGMM, either a GMM or an SMM es-
timating framework can be used to obtain the estimates.

Parametric method: 2-stage method

Two-stage IV methods consist of 2 regression stages. In the
first-stage regression, the exposure is regressed on the IV using

linear regression. In the second-stage regression, the outcome
is regressed on fitted values of the exposure taken from the
first-stage regression. If the outcome is continuous, linear re-
gression is usually used in the second-stage regression, and
the 2-stage method is known as 2-stage least squares (24). If
the outcome is binary, then log-linear regression can be used
in the second stage to estimate a CRR. With a single IV, the
2-stage estimate is equal to the ratio (or Wald) estimate, calcu-
lated as the coefficient for the association of the IV with the
outcome divided by the coefficient for the association of the
IVwith the exposure (8). In the ratio estimate, linear regression
is used for the IV association with the exposure and linear or
log-linear regression for the IV association with the outcome,
as appropriate. The 2-stage method is a parametric estimation
method, because a model for the outcome distribution is as-
sumed for each individual.

Aside from in degenerate cases, log-linear and linear regres-
sion models (and other regression models based on an expo-
nential family distribution) give unique parameter estimates,
so there is no issue of lack of identification in the 2-stage
method. The gradient of the log-likelihood function (i.e., the
objective function) is a decreasing function of each of the pa-
rameters for all values of the data, and so it has a unique max-
imum. On the contrary, the estimating function in a GMM/
SMM method is not guaranteed to be a monotonic (i.e., in-
creasing or decreasing) function of the parameters, and so a
unique parameter estimate is not always attained.

Motivating example

In their paper, Palmer et al. (20) estimate the CRR for the
effect of body mass index (BMI) (weight (kg)/height (m)2)
on asthma risk using the MGMM method as exp(β1) = 0.81.
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Figure 1. Estimating function for the example from Palmer et al. (20)
demonstrating lack of identification. Two distinct parameter values for
the causal risk ratio (0.81 and 4.95) satisfy the estimating equationP

i yi expð"β1xi Þðgi " !gÞ ¼ 0, where !g is the average value of G in
the population.
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Asthma data example

3. When there are multiple IVs, there is a separate estimating
function for each IV. If there are more estimating functions
than parameters, it is not possible, in general, for the estimating
functions all to be equated to 0 simultaneously. Therefore,
many automated software routines for GMM/SMM estimation
do not solve the estimating equations, but instead minimize an
objective function (24) (Web Appendix 3).

Applied example

Results from the applied example are given in Table 2.
Supplementary details of the methods are provided in Web

Appendix 4. The estimating functions for these data are
shown in Figure 3. We see that the estimating function is
not “well-behaved” in any of the cases: none of the functions
is monotonic (either increasing for all values of the CRR or
decreasing for all values). The only function with a single so-
lution to the moment conditions is the MGMM estimating
function using the FTO genetic variant, although this solu-
tion is far from the estimate reported by the automated opti-
mization routine. The automated software command reports
either 1 of the solutions to the estimating equations (MGMM
method for Speliotes score without FTO genetic variant) or a
minimum of the moment/objective function (all other cases).

Table 2. Estimates for the Effect of Body Mass Indexa on the Probability of Early Menarche From Multiplicative and
Linear GeneralizedMethod of Moments and 2-StageMethodsUsing Different InstrumentsWith Strength asMeasured
by the F Statistic, Avon Longitudinal Study of Parents and Children, 1991–1997

Instrument F Statistic
MGMM Method LGMM Method 2-Stage Method

Estimate 95% CI Estimate 95% CI Estimate 95% CI

FTO gene 7.8 1.28 NPb 1.45 1.00, 2.12 1.68 0.89, 3.17

Speliotes 34.1 1.64 NPb 1.40 1.35, 1.46 1.63 1.19, 2.21

Speliotes without FTO gene 25.4 1.91 0.42, 8.79 1.37 1.32, 1.42 1.61 1.12, 2.30

Abbreviations: CI, confidence interval; FTO, fat mass and obesity associated; LGMM, linear generalized method of
moments; MGMM, multiplicative generalized method of moments; NP, not provided.

a Weight (kg)/height (m)2.
b The matrix used in calculating the standard errors of the parameter estimates was not invertible; no confidence

interval was provided.
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Figure 3. Estimating functions for the applied example from the multiplicative generalized method of moments method (in A, B, and C), and the
linear generalized method of moments method (in D, E, and F) for the following 3 instruments: in A and D, a variant from the fat mass and obesity
associated (FTO) gene; in B and E, the Speliotes score; and in C and F, the Speliotes score with the FTO genetic variant omitted. Avon Longitudinal
Study of Parents and Children, 1991–1997.
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Steve’s simulations

Large-sample behavior of GMM/SMM estimators

Additional simulations for a limited number of values of ρ2

(i.e., 0.005, 0.01, and 0.1) with 1 million participants are pre-
sented in Web Table 2 (Web Appendix 2). These provide ev-
idence of poor identification at even larger sample sizes. Even
if a unique solution from the GMM/SMM method is guaran-
teed in the asymptotic limit (i.e., as the sample size increases
toward infinity), the probability of obtaining a unique solu-
tion increases so slowly that poor identification will be a rel-
evant issue for all practically obtainable sample sizes when
ρ ≤ 0.1, and potentially for stronger instruments.
In the linear case, the strength of an IV is usually measured

by the F statistic. This means that any IV can be strengthened
from a “weak” instrument to a “strong” instrument simply by

increasing the sample size. On the contrary, for the log-linear
case with a binary outcome using the GMM and SMMmeth-
ods, the F statistic does not appear to be a relevant measure of
instrument strength, and increases in the sample size do not
seem to affect greatly the strength of the instrument, particu-
larly when ρ2 ≤ 0.01.

Absence of a solution to the estimating equations

A lack of a solution to the estimating equations with a single
IV is an indication that there is not much information on the
parameter of interest in the data set. In this case, a unique pa-
rameter estimate may still be obtained byminimizing an objec-
tive function based on the square of the estimating function
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Figure 2. Percentage of simulated data sets with no solution (solid color), 1 solution (shaded), and multiple solutions (no color) from A) multipli-
cative generalized method of moments, and B) linear generalized method of moments methods with different strengths of instrument as measured
by the squared correlation between the instrument and exposure (ρ2) and different sample sizes (n). For each value of ρ2, the first column is n =
5,000, the second column is n = 10,000, the third column is n = 20,000, and the fourth column is n = 50,000.

6 Burgess et al.
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Related work: Brumback et al. SNMs 3-armed trial

I Brumback et al., Stats Med, 2014 “Using structural-nested
models to estimate the effect of cluster-level adherence on
individual-level outcomes with a three-armed
cluster-randomized trial”

I performed estimation using grid search

I 1 example of MSMM no solution (Appendix B)

I 3 examples of logistic SMM no solution (Appendix C)

I No examples of SMM with more than 1 solution
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Brumback Appendix B example

B. A. BRUMBACK ET AL.

stratify on them, as we did with gender. Another option is to incorporate them as continuous covari-
ates into the SNM—see the Appendix of Hernan and Robins [24]—but that might lead to even more
difficulties in terms of non-existent solutions to the SNM estimating equation.

Our simulation study validated our methodology, but it also demonstrated that for certain data sets, the
estimating equation has no solution. This is a problem that deserves further study, for two reasons. First,
perhaps one could predict from the data set whether the estimating equation has no solution, before
applying the algorithm. Second, one might try to adapt the methodology so that an estimate could be
obtained for any data set.

Appendix A

An example, including observed data
!
Zi ; Ai ; Yij

"
as well as counterfactual data and error terms, which

satisfies the marginal structural model and randomization assumptions but not the endogenous regressor
assumptions. One can calculate E.!ij / D E

!
!ij .Ai /

"
D !0:138 ¤ 0 and E

!
Zi!ij

"
D !0:048 ¤ 0. In

this example, E
!
Yij .1/! Yij .0/

"
D 0:6 ! 0:4 D 0:2. Randomization holds, in that E.Zi / D 0:5 and

E
!
!ij .0/

"
D E.!ij .1// D 0. The last column represents the frequency of the row divided by the total

sample size, n.

Zi Ai Yij .0/ Yij .1/ Yij !ij .0/ !ij .1/ !ij .Ai / freq/n

0 0 0 0 0 !0:6 !0:4 !0:6 0.05
0 0 0 1 0 !0:6 0.6 !0:6 0.08
0 0 1 0 1 0.4 !0:4 0.4 0.04
0 0 1 1 1 0.4 0.6 0.4 0.08
0 1 0 0 0 !0:6 !0:4 !0:4 0.05
0 1 0 1 1 !0:6 0.6 0.6 0.02
0 1 1 0 0 0.4 !0:4 !0:4 0.16
0 1 1 1 1 0.4 0.6 0.6 0.02
1 0 0 0 0 !0:6 !0:4 !0:6 0.05
1 0 0 1 0 !0:6 0.6 !0:6 0.05
1 0 1 0 1 0.4 !0:4 0.4 0.04
1 0 1 1 1 0.4 0.6 0.4 0.05
1 1 0 0 0 !0:6 !0:4 !0:4 0.05
1 1 0 1 1 !0:6 0.6 0.6 0.05
1 1 1 0 0 0.4 !0:4 !0:4 0.16
1 1 1 1 1 0.4 0.6 0.6 0.05

Appendix B

An example of observed data for which the linear SNM estimates the causal risk difference outside the
possible range at !1:83, whereas for the loglinear SNM the iterative algorithm fails to converge. We set
nD 500.

Zi Ai Yi freq/n

0 0 0 0.13
0 0 1 0.12
0 1 0 0.07
0 1 1 0.18
1 0 0 0.1
1 0 1 0.09
1 1 0 0.21
1 1 1 0.10

Appendix C

Three data sets generated according to the logistic SNM in the simulation study of section 4, but for
which there is no solution to the estimating equation. Column 4 represents the expected frequency (total

1500

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1490–1502
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Brumback Appendix B example

. tab a z, chi2

| z

a | 0 1 | Total

-----------+----------------------+----------

0 | 125 95 | 220

1 | 125 155 | 280

-----------+----------------------+----------

Total | 250 250 | 500

Pearson chi2(1) = 7.3052 Pr = 0.007

. tab y z, chi2

| z

y | 0 1 | Total

-----------+----------------------+----------

0 | 100 155 | 255

1 | 150 95 | 245

-----------+----------------------+----------

Total | 250 250 | 500

Pearson chi2(1) = 24.2097 Pr = 0.000
18 / 37



Brumback Appendix B example

. regress a z

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 7.38

Model | 1.8 1 1.8 Prob > F = 0.0068

Residual | 121.4 498 .2437751 R-squared = 0.0146

-------------+------------------------------ Adj R-squared = 0.0126

Total | 123.2 499 .246893788 Root MSE = .49374

------------------------------------------------------------------------------

a | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

z | .12 .0441611 2.72 0.007 .033235 .206765

_cons | .5 .0312266 16.01 0.000 .4386479 .5613521

------------------------------------------------------------------------------
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Brumback Appendix B example

I ASMM risk difference = -1.83 (95% CI -3.36, -0.30)

I MSMM estimating equation plot
(with centred X and Z ; closest to 0 at CRR=2.10)
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Brumback Appendix B example

. gmm (y*exp(-1*a*{psi}) - {ey0}), instruments(z) ///

> conv_maxiter(500) nolog

convergence not achieved
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Brumback Appendix B example

. gmm (y*exp(-1*c_a*{psi})), instruments(c_z) onestep nolog

Final GMM criterion Q(b) = .2518336

GMM estimation

Number of parameters = 1

Number of moments = 2

Initial weight matrix: Unadjusted Number of obs = 500

------------------------------------------------------------------------------

| Robust

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

/psi | .0774102 1.764262 0.04 0.965 -3.380479 3.535299

------------------------------------------------------------------------------

Instruments for equation 1: c_z _cons

. lincom [psi]_cons, eform

( 1) [psi]_cons = 0

------------------------------------------------------------------------------

| exp(b) Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 1.080485 1.906258 0.04 0.965 .0340312 34.30528

------------------------------------------------------------------------------
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Brumback Appendix B example

. gmm (y*exp(-1*c_a*{psi})), instruments(c_z) nolog

Final GMM criterion Q(b) = .4891671

GMM estimation

Number of parameters = 1

Number of moments = 2

Initial weight matrix: Unadjusted Number of obs = 500

GMM weight matrix: Robust

------------------------------------------------------------------------------

| Robust

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

/psi | .0474277 1.770337 0.03 0.979 -3.42237 3.517225

------------------------------------------------------------------------------

Instruments for equation 1: c_z _cons

. lincom [psi]_cons, eform

( 1) [psi]_cons = 0

------------------------------------------------------------------------------

| exp(b) Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 1.04857 1.856323 0.03 0.979 .032635 33.69082

------------------------------------------------------------------------------
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Brumback Appendix C example

B. A. BRUMBACK ET AL.

sample size is 400) for the model used for simulation, and columns 5–7 represent the observed fre-
quencies within the data sets. Surprisingly, the departures of the observed frequencies from the expected
frequencies are not extreme.

Zi Ai Yi E(freq) freq 1 freq 2 freq 3

0 0 0 80 81 79 84
0 0 1 20 18 12 14
0 1 0 10 14 9 9
0 1 1 6.6667 7 8 6
0 2 0 5.5556 3 9 7
0 2 1 11.1111 3 8 7
1 0 0 12.5 17 9 11
1 0 1 4.17 4 8 3
1 1 0 66.6667 69 70 69
1 1 1 33.3333 36 25 27
1 2 0 5.5556 7 5 3
1 2 1 11.1111 6 18 11
2 0 0 11.1111 12 17 12
2 0 1 5.5556 17 6 13
2 1 0 10 5 17 10
2 1 1 6.6667 8 9 9
2 2 0 50 46 54 40
2 2 1 50 37 35 56
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Brumback Appendix C example
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Lack of identification of SMMs: Summary

I Don’t just rely on gmm or whatever software you’re using

I Plot the estimating equation for different values of ψ when
fitting SMMs

I We found SMMs with 0, 1, and 2 solutions

I Future work: For logistic SMM alternative estimation strategy,
PROC NLMIXED (Matsouaka & Tchetgen Tchetgen, Tech.
Rep., 2014)
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Multiple paired comparisons for investigating pleiotropy
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Something to watch out for with ivregress/ivreg2 in Stata

Unusual results – simulations, TSLS, allele score as single IV
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Something to watch out for with ivregress/ivreg2 in Stata

Unusual results – simulations, TSLS, allele score as single IV

. ivreg2 fvc (height = unwscore15), nocollin

IV (2SLS) estimation

--------------------

Estimates efficient for homoskedasticity only

Statistics consistent for homoskedasticity only

Number of obs = 4216

F( 1, 4214) = 2.1e+05

Prob > F = 0.0000

Total (centered) SS = 423750161.1 Centered R2 = 0.2645

Total (uncentered) SS = 1.60231e+10 Uncentered R2 = 0.9805

Residual SS = 311685745 Root MSE = 271.9

------------------------------------------------------------------------------

fvc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

height | 14.51982 .0316094 459.35 0.000 14.45787 14.58177

_cons | 0 (omitted)

------------------------------------------------------------------------------
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Something to watch out for with ivregress/ivreg2 in Stata

Unusual results – simulations, TSLS, allele score as single IV

. ivregress 2sls fvc (height = unwscore15)

Instrumental variables (2SLS) regression Number of obs = 4216

Wald chi2(1) = 0.00

Prob > chi2 = 0.9979

R-squared = 0.1475

Root MSE = 292.72

------------------------------------------------------------------------------

fvc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

height | 7.155347 2688.03 0.00 0.998 -5261.287 5275.598

_cons | 975.6267 356103.4 0.00 0.998 -696974.3 698925.5

------------------------------------------------------------------------------
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Something to watch out for with ivregress/ivreg2 in Stata

One solution is to center the intermediate:

. ivregress 2sls fvc (c_height = unwscore15)

Instrumental variables (2SLS) regression Number of obs = 4216

Wald chi2(1) = 0.00

Prob > chi2 = 0.9979

R-squared = 0.1475

Root MSE = 292.72

------------------------------------------------------------------------------

fvc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

c_height | 7.155347 2688.03 0.00 0.998 -5261.287 5275.598

_cons | 1923.549 4.50827 426.67 0.000 1914.713 1932.385

------------------------------------------------------------------------------
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Something to watch out for with ivregress/ivreg2 in Stata

One solution is to center the intermediate:

. ivreg2 fvc (c_height = unwscore15), nocollin

IV (2SLS) estimation

--------------------

Estimates efficient for homoskedasticity only

Statistics consistent for homoskedasticity only

Number of obs = 4216

F( 1, 4214) = 0.00

Prob > F = 0.9979

Total (centered) SS = 423750161.1 Centered R2 = 0.1475

Total (uncentered) SS = 1.60231e+10 Uncentered R2 = 0.9775

Residual SS = 361258681.1 Root MSE = 292.7

------------------------------------------------------------------------------

fvc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

c_height | 7.155347 2688.03 0.00 0.998 -5261.287 5275.598

_cons | 1923.549 4.50827 426.67 0.000 1914.713 1932.385

------------------------------------------------------------------------------29 / 37



Multiple paired comparisons for investigating pleiotropy
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Multiple paired comparisons for investigating pleiotropy
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The idea

24 

 

Figure 1. Illustration of the fractionation/combinatorial approach. 

 

 

 

 

 

 

 

 

 
 
 

 

Four genetic variants (a, b, c, d) are divided into independent pairs, and both combinations are utilized to generate an instrumental variable (IV) 
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Example: effect of height on lung capacity (FVC) 20 SNPs

Overall  (I-squared = 0.0%, p = 0.831)

rs10512248

rs6060373

ID

rs12735613
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Example: using SNPs as multiple instruments in TSLS
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Example: using SNPs as multiple instruments in TSLS
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Example: using SNPs as multiple instruments in TSLS

I Sargan over-id test p = 0.011

I and 12% of paired differences exclude the null

I But paired differences centred on zero (2.5, 97.5 centiles:
-27.0, 28.3)
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Example: using SNPs as allele count in TSLS

0.07% of 95% CIs exclude 0 (all differences), 0% exclude 0 (both set 1 & 2 F > 10). 35 / 37



Han’s algorithm

I Han (2008) defined median of LATEs as robust L1 GMM
estimator
Median of 20 separate instruments = 24.2

I Also proposed an algorithm to select instruments based on
over-id test p-values

I Using p = 0.05 algorithm selects 15 of the 20 instruments;
IV estimate = 36.8 (95% CI 26.3, 47.2); Sargan p=0.173
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Summary

I Lack of identification in SMMs:
I Don’t just rely on gmm or whatever software you’re using
I Plot the estimating equation for different values of ψ when

fitting SMMs
I We found SMMs with 0, 1, and 2 solutions

I Multiple paired comparisons
I Watch out for ivregress/ivreg2 dropping the constant from

2nd stage model
I Dichotomy between over-id test results and distribution of the

paired differences
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