Lack of identification in structural mean models and multiple paired comparisons for investigating pleiotropy

Tom Palmer

Division of Health Sciences, Warwick Medical School, University of Warwick, UK

9 September 2014

- 1. Lack of identification in structural mean models (SMMs)
- 2. Mulitple paired comparisons for investigating pleiotropy
- 3. Summary

Lack of identification in SMMs

- Palmer TM, Sterne JAC, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Davey Smith G, Didelez V. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. American Journal of Epidemiology, 2011, 173 (12), 1392–1402.
- Clarke PS, Palmer TM, Windmeijer F. Estimating structural mean models with multiple instrumental variables using the generalised method of moments. CMPO working paper 11/266.
- Burgess S, Granell R, Palmer TM, Sterne JAC, Didelez V. Lack of identification in semiparametric instrumental variable models with binary outcomes. American Journal of Epidemiology, 2014, 180 (1), 111–119.
- Granell R, Henderson AJ, Evans DM, Davey Smith G, Ness AR, Lewis S, Palmer TM, Sterne JAC. Effects of BMI, fat mass, and lean mass on asthma in childhood: a Mendelian randomization study, 2014, PLoS Medicine, 11 (7), e1001669.

Multiplicative SMM

Robins defined the multiplicative SMM as follows:

- X exposure/treatment
- Y outcome
- Z instrument

 $Y{X = 0}$ exposure/treatment free potential outcome

$$\log(E[Y|X, Z]) - \log(E[Y\{0\}|X, Z]) = \psi X$$
$$\frac{E[Y|X, Z]}{E[Y\{0\}|X, Z]} = \exp(\psi X)$$
$$\psi : \text{ log causal risk ratio}$$
$$\text{Rearrange: } Y\{0\} = Y \exp(-\psi X)$$

Under the instrumental variable assumptions:

$$Y{0} \perp Z$$
$$Y \exp(-\psi X) \perp Z$$
$$Y \exp(-\psi X) - Y{0} \perp Z$$

Under the instrumental variable assumptions:

$$Y{0} \perp Z$$
$$Y \exp(-\psi X) \perp Z$$
$$Y \exp(-\psi X) - Y{0} \perp Z$$

Moment conditions (Clarke et al. Tech rep 2011) Z=0,1

$$E[(Y \exp(-\psi X) - Y\{0\})1] = 0$$

$$E[(Y \exp(-\psi X) - Y\{0\})Z_1] = 0$$

Under the instrumental variable assumptions:

$$Y\{0\} \perp \!\!\!\perp Z$$
$$Y \exp(-\psi X) \perp \!\!\!\perp Z$$
$$Y \exp(-\psi X) - Y\{0\} \perp \!\!\!\perp Z$$

Moment conditions (Clarke et al. Tech rep 2011) Z=0,1,2 Over-identified

$$E[(Y \exp(-\psi X) - Y\{0\})1] = 0$$

$$E[(Y \exp(-\psi X) - Y\{0\})Z_1] = 0$$

$$E[(Y \exp(-\psi X) - Y\{0\})Z_2] = 0$$

```
MSMM Stata gmm syntax
```

```
gmm (y*exp(-1*x*{psi}) - {ey0}), instruments(z1 z2 z3)
```

What is GMM?

Minimises quadratic form: $Q = m'W^{-1}m$

Alternative estimation approach

Bowden and Vansteelandt, Stats Med, 2010. Solve estimating equation for ψ

$$\sum_{i=1}^{N} Y_i \exp(-\psi X_i)(Z_i - \overline{Z}) = 0$$

Table 2. Distribution of Asthma and Possible Confounders by Fat Mass and Obesity-Associated (FTO) Genotype (rs9339609) in Children Aged 7 Years, Avon Longitudinal Study of Parents and Children, 1991–1992

	Tetal No	т	г	A	т	4	AA	P Value
	TOTAL NO.	No.	%	No.	%	No.	%	From χ^2 Test
No. and % of participants	4,647	1,699	37	2,220	48	728	16	0.95 ^a
Asthma (yes)	4,647	234	13.8	302	13.6	113	15.5	0.41
Female sex	4,647	832	49	1,070	48	386	53	0.08
Low birth weight	4,594	75	4	80	4	36	5	0.21
Parental education (less than university degree)	4,593	893	54	1,214	56	390	55	0.44
Prenatal smoking	4,579	404	24	562	26	167	23	0.30
Postnatal smoking	4,407	270	17	390	19	115	17	0.23
Low parental social class	3,974	211	15	295	15	82	13	0.41

^a Test for Hardy-Weinberg equilibrium.

Table 3. Instrumental Variable Estimates of the Causal Odds Ratio and Causal Risk Ratio for the Effect of Body Mass Index on Asthma Risk, Avon Longitudinal Study of Parents and Children, 1991–1992

	COR or CRR	95% CI
Standard logistic regression analysis		
Unadjusted odds ratio	1.06	1.02, 1.10
Adjusted ^a odds ratio	1.08	1.03, 1.13
Wald/ratio estimator ^b		
CRR	1.37	0.64, 2.96
COR	1.45	0.65, 3.43
2-stage estimator ^c		
CRR	1.37	0.68, 2.78
COR	1.45	0.64, 3.29
Control function ^c		
CRR	1.37	0.68, 2.76
COR	1.44	0.63, 3.28
Logistic structural mean modeld		
COR	1.64	0.29, 9.31
Multiplicative structural mean model ^d		
CRR	0.81	0.44, 1.48

- \blacktriangleright Possible explanation for MSMM point estimate < 1
- Interaction between BMI and FTO genotype (p = 0.038)

- Possible explanation for MSMM point estimate < 1</p>
- Interaction between BMI and FTO genotype (p = 0.038)

Figure 4. Mean body mass index (weight (kg)/height (m)²), denoted by diamonds, according to fat mass and obesity-associated (*FTO*) genotype (rs9939609) for A) asthmatic and B) nonasthmatic children aged 7 years, Avon Longitudinal Study of Parents and Children, 1991–1992. Bars, 95% confidence interval.

- This associational interaction could result from an interaction between FTO and unobserved confounders
- or could be a chance finding

 Table 4.
 Results of Simulations Comparing the Multiplicative

 Generalized Method of Moments and 2-Stage Estimators of the
 Causal Risk Ratio

	2-Stage Estimate for Log CRR (MCE)	MGMM Estimate for Log CRR (MCE)
Scenario 1: no causal effect with interaction		
Mean bias	-0.007 (0.0046)	0.009 (0.0094)
MSE	0.021 (0.0010)	0.088 (0.0042)
Coverage	0.952 (0.0068)	0.964 (0.0059)
Correlation between estimates	-0	.23
% of estimates on opposite sides of the CRR of 1	64	l.1

- This associational interaction could result from an interaction between FTO and unobserved confounders
- or could be a chance finding

Scenario 2: causal effect with interaction		
Mean bias	-0.206 (0.0042)	-0.146 (0.0100)
MSE	0.060 (0.0019)	0.120 (0.0055)
Coverage	0.674 (0.0148)	0.919 (0.0086)
Correlation between estimates	-0	.12
% of estimates on opposite sides of the CRR of 1.2	35	5.9

- This associational interaction could result from an interaction between FTO and unobserved confounders
- or could be a chance finding

Scenario 3: no causal effect with no interaction		
Mean bias	-0.005 (0.0049)	-0.001 (0.0053
MSE	0.024 (0.0010)	0.029 (0.0018
Coverage	0.942 (0.0074)	0.964 (0.0059
Correlation between estimates	0.8	38
% of estimates on opposite sides of the CRR of 1	7.	3

- This associational interaction could result from an interaction between FTO and unobserved confounders
- or could be a chance finding

Scenario 4: causal effect with no interaction		
Mean bias	0.003 (0.0043)	0.003 (0.0049)
MSE	0.018 (0.0009)	0.024 (0.0014)
Coverage	0.954 (0.0066)	0.964 (0.0059)
Correlation between estimates	0.82	2
% of estimates on opposite sides of the CRR of 1.2	15	

Asthma data example – 2 solutions to estimating equation

Figure 1. Estimating function for the example from Palmer et al. (20) demonstrating lack of identification. Two distinct parameter values for the causal risk ratio (0.81 and 4.95) satisfy the estimating equation $\sum_i y_i \exp(-\beta_1 x_i)(g_i - \bar{g}) = 0$, where \bar{g} is the average value of *G* in the population.

Figure 3. Estimating functions for the applied example from the multiplicative generalized method of moments method (in A, B, and C), and the linear generalized method of moments method (in D, E, and F) for the following 3 instruments: in A and D, a variant from the fat mass and obesity associated (*FTO*) gene; in B and E, the Speliotes score; and in C and F, the Speliotes score with the *FTO* genetic variant omitted. Avon Longitudinal Study of Parents and Children, 1991–1997.

Steve's simulations

Figure 2. Percentage of simulated data sets with no solution (solid cooh, 1 solution (shaded), and multiple solutions (no color) from A) multiple cative generalized method of moments, and B) inera generalized method of moments methods with different strengths of instrument as measured by the squared correlation between the instrument and exposure (b²) and different sample sizes (*n*). For each value of p², the first column is *n* = 5,000, the second column is *n* = 10,000, the third column is *n* = 20,000, and the fourth column is *n* = 5,000.

Related work: Brumback et al. SNMs 3-armed trial

- Brumback et al., Stats Med, 2014 "Using structural-nested models to estimate the effect of cluster-level adherence on individual-level outcomes with a three-armed cluster-randomized trial"
- performed estimation using grid search
- 1 example of MSMM no solution (Appendix B)
- 3 examples of logistic SMM no solution (Appendix C)
- No examples of SMM with more than 1 solution

Z_i	A_i	Y_i	freq/n
0	0	0	0.13
0	0	1	0.12
0	1	0	0.07
0	1	1	0.18
1	0	0	0.1
1	0	1	0.09
1	1	0	0.21
1	1	1	0.10

. tab a z, chi2 z 1 | Total а 0 0 125 95 I 220 1 125 155 | 280 Total | 250 250 | 500 Pearson chi2(1) = 7.3052 Pr = 0.007 . tab y z, chi2 z 1 | Total y 0 0 1 100 155 l 255 1 150 95 I 245 Total | 250 250 I 500 Pearson chi2(1) = 24.2097 Pr = 0.000

. regress a z

Source	SS	df	MS		Number of obs	= 500
+					F(1, 498)	= 7.38
Model	1.8	1	1.8		Prob > F	= 0.0068
Residual	121.4	498	.2437751		R-squared	= 0.0146
+					Adj R-squared	= 0.0126
Total	123.2	499	.246893788		Root MSE	= .49374
a	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
z	.12	.04416	611 2.72	0.007	.033235	.206765
_cons	.5	.03122	266 16.01	0.000	.4386479	.5613521

- ► ASMM risk difference = -1.83 (95% CI -3.36, -0.30)
- MSMM estimating equation plot (with centred X and Z; closest to 0 at CRR=2.10)


```
. gmm (y*exp(-1*c_a*{psi})), instruments(c_z) onestep nolog
Final GMM criterion Q(b) = .2518336
GMM estimation
Number of parameters = 1
Number of moments = 2
Initial weight matrix: Unadjusted
                                  Number of obs = 500
                   _____
                  Robust
             Coef. Std. Err. z P>|z| [95% Conf. Interval]
   /psi |
           .0774102 1.764262 0.04 0.965 -3.380479
                                              3 535299
  _____
Instruments for equation 1: c_z _cons
. lincom [psi]_cons, eform
( 1) [psi]_cons = 0
           exp(b)
                  Std. Err. z P>|z|
                                      [95% Conf. Interval]
                  ------
      (1)
         1.080485 1.906258 0.04 0.965
                                      .0340312
                                              34.30528
```

```
. gmm (y*exp(-1*c_a*{psi})), instruments(c_z) nolog
Final GMM criterion Q(b) = .4891671
GMM estimation
Number of parameters = 1
Number of moments
                = 2
Initial weight matrix: Unadjusted
                                          Number of obs =
                                                           500
GMM weight matrix:
                Robust
                      Robust
               Coef. Std. Err. z P>|z| [95% Conf. Interval]
                _____
      /psi | .0474277 1.770337 0.03 0.979
                                             -3.42237
                                                       3 517225
                           _____
Instruments for equation 1: c_z _cons
. lincom [psi]_cons, eform
( 1) [psi]_cons = 0
             exp(b)
                      Std. Err.
                              z P>|z|
                                             [95% Conf. Interval]
_____
       (1) | 1.04857
                    1.856323
                               0.03 0.979
                                             .032635
                                                       33,69082
```

Z_i	A_i	Y_i	E(freq)	freq 1	freq 2	freq 3
0	0	0	80	81	79	84
0	0	1	20	18	12	14
0	1	0	10	14	9	9
0	1	1	6.6667	7	8	6
0	2	0	5.5556	3	9	7
0	2	1	11.1111	3	8	7
1	0	0	12.5	17	9	11
1	0	1	4.17	4	8	3
1	1	0	66.6667	69	70	69
1	1	1	33.3333	36	25	27
1	2	0	5.5556	7	5	3
1	2	1	11.1111	6	18	11
2	0	0	11.1111	12	17	12
2	0	1	5.5556	17	6	13
2	1	0	10	5	17	10
2	1	1	6.6667	8	9	9
2	2	0	50	46	54	40
2	2	1	50	37	35	56

Lack of identification of SMMs: Summary

- Don't just rely on gmm or whatever software you're using
- \blacktriangleright Plot the estimating equation for different values of ψ when fitting SMMs
- ▶ We found SMMs with 0, 1, and 2 solutions
- Future work: For logistic SMM alternative estimation strategy, PROC NLMIXED (Matsouaka & Tchetgen Tchetgen, Tech. Rep., 2014)

Unusual results - simulations, TSLS, allele score as single IV

Unusual results - simulations, TSLS, allele score as single IV

. ivreg2 fvc (height = unwscore15), nocollin

IV (2SLS) estimation

Estimates efficient for homoskedasticity only Statistics consistent for homoskedasticity only

Unusual results - simulations, TSLS, allele score as single IV

```
. ivregress 2sls fvc (height = unwscore15)
Instrumental variables (2SLS) regression Number of obs =
```

Wald chi2(1)	=	0.00
Prob > chi2	=	0.9979
R-squared	=	0.1475
Root MSE	=	292.72

fvc	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
height	7.155347	2688.03	0.00	0.998	-5261.287	5275.598
_cons	975.6267	356103.4		0.998	-696974.3	698925.5

4216

One solution is to center the intermediate:

. ivregress 2sls fvc (c_height = unwscore15)

Instrumental variables (2SLS) regression

Number of obs	=	4216
Wald chi2(1)	=	0.00
Prob > chi2	=	0.9979
R-squared	=	0.1475
Root MSE	=	292.72

fvc		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
c_height		7.155347	2688.03	0.00	0.998	-5261.287	5275.598
_cons		1923.549	4.50827	426.67	0.000	1914.713	1932.385

One solution is to center the intermediate:

. ivreg2 fvc (c_height = unwscore15), nocollin

IV (2SLS) estimation

Estimates efficient for homoskedasticity only Statistics consistent for homoskedasticity only

					Number of obs	= 4216
					F(1, 4214)	= 0.00
					Prob > F	= 0.9979
Total (centered)	SS =	423750161.1			Centered R2	= 0.1475
Total (uncentere	d) SS =	1.60231e+10			Uncentered R2 :	= 0.9775
Residual SS	=	361258681.1			Root MSE :	= 292.7
fvc	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
c_height	7.155347	2688.03	0.00	0.998	-5261.287	5275.598
_cons	1923.549	4.50827	426.67	0.000	1914.713	1932.385

Mendel

Sargan

Hansen

The idea

Example: effect of height on lung capacity (FVC) 20 SNPs

TSLS estimate 33.9 (23.6, 44.2), Sargan over-id test p=0.011

Example: using SNPs as multiple instruments in TSLS

Example: using SNPs as multiple instruments in TSLS

Example: using SNPs as multiple instruments in TSLS

12% of 95% Cls exclude 0.

- Sargan over-id test p = 0.011
- ▶ and 12% of paired differences exclude the null
- But paired differences centred on zero (2.5, 97.5 centiles: -27.0, 28.3)

0.07% of 95% CIs exclude 0 (all differences), 0% exclude 0 (both set 1 & 2 F > 10). 35/37

- Han (2008) defined median of LATEs as robust L₁ GMM estimator
 Median of 20 separate instruments = 24.2
- Also proposed an algorithm to select instruments based on over-id test *p*-values
- Using p = 0.05 algorithm selects 15 of the 20 instruments;
 IV estimate = 36.8 (95% CI 26.3, 47.2); Sargan p=0.173

Lack of identification in SMMs:

- Don't just rely on gmm or whatever software you're using
- \blacktriangleright Plot the estimating equation for different values of ψ when fitting SMMs
- We found SMMs with 0, 1, and 2 solutions
- Multiple paired comparisons
 - ▶ Watch out for ivregress/ivreg2 dropping the constant from 2nd stage model
 - Dichotomy between over-id test results and distribution of the paired differences