Title
mrmodal -- Modal estimator for summary data
Syntax
mrmodal varname_gd varname_gdse varname_gp varname_gpse [if] [in] [, options]
options Description ---------------------------------------------------------------------------------------------- level(#) set confidence level; default is level(95) nome NOME assumption nosave Do not save density and vector of IV estimates in Mata phi(#) value of phi (for bandwidth) reps(#) number of bootstrap replications to obtain standard error seed(#) seed for random number generator for bootstrapping to obtain standard error weighted weighted IV estimates
Description
mrmodal implements the zero modal estimator of Hartwig et al. (2017) for use with summary level data (i.e. reported genotype-disease [SNP-outcome] and genotype-phenotype [SNP-exposure] association estimates and their standard errors for individual genotypes).
Standard errors are obtained by parametric bootstrapping.
varname_gd is a variable containing the genotype-disease (SNP-outcome) association estimates.
varname_gdse is a variable containing the genotype-disease (SNP-outcome) association estimate standard errors.
varname_gp is a variable containing the genotype-phenotype (SNP-exposure) association estimates.
varname_gpse is a variable containing the genotype-phenotype (SNP-exposure) association estimate standard errors.
Options
level(#); see [R] estimation options.
nome specifies the NOME (no measurement error in the genotype-phenotype [SNP-exposure] associations) assumption.
nosave specifies that the density of the IV estimates and column vector of IV estimates should not be saved in Mata. If not specified these are saved in Mata as mrmodal_densityiv and mrmodal_g respectively.
phi(#) specifies the parameter phi which is used in the calculation of the bandwidth for the density estimation. Default is phi = 1, other values commonly chosen are 0.25 and 0.5.
reps(#) specifies the number of bootstrap replications for obtaining the standard error. The default is 1000 replications.
seed(#) specifies the initial value of the random-number seed. The default is the current random-number seed. Specifying seed(#) is the same as typing set seed # before issuing the command; see set_seed.
weighted weight the instrumental variable estimates.
Examples
Using the data provided by Do et al. (2013).
Setup . use https://raw.github.com/remlapmot/mrrobust/master/dodata, clear
Select observations (p-value with exposure < 10^-8) . gen byte sel1 = (ldlcp2 < 1e-8)
Investigate what is a good value of phi to use (we want a smooth density plot) . mrmodalplot chdbeta chdse ldlcbeta ldlcse if sel1==1
Simple mode estimator . mrmodal chdbeta chdse ldlcbeta ldlcse if sel1==1
Simple mode estimator with reproducible standard error . mrmodal chdbeta chdse ldlcbeta ldlcse if sel1==1, seed(12345)
Weighted mode estimator . mrmodal chdbeta chdse ldlcbeta ldlcse if sel1==1, weighted
Simple mode estimator with NOME assumption . mrmodal chdbeta chdse ldlcbeta ldlcse if sel1==1, nome
Weighted mode estimator with NOME assumption . mrmodal chdbeta chdse ldlcbeta ldlcse if sel1==1, weighted nome
Stored results
mrmodal stores the following in e():
Scalars e(k) number of instruments e(phi) value of phi e(reps) number of (bootstrap) replications
Macros e(cmd) mrmodal e(cmdline) command as typed
Matrices e(b) coefficient vector e(V) variance-covariance matrix of the estimates
References
Do et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nature Genetics, 2013, 45, 1345-1352. DOI
Hartwig FP, Davey Smith G, Bowden J. Robust inference in two-sample Mendelian randomisation via the zero modal pleiotropy assumption. International Journal of Epidemiology, 2017, 46, 6, 1985-1998. DOI
Author
INCLUDE help mrrobust-author