Title
mrfunnel -- Funnel plot for two-sample MR analysis
Syntax
mrfunnel varname_gd varname_gdse varname_gp varname_gpse [if] [in] [, options]
options Description ---------------------------------------------------------------------------------------------- extraplots(string) extra plots to add to the overall plot metric(metric) scale of y-axis noivw do not plot IVW line nomregger do not plot MR-Egger line mrivestsopts(opts) options passed to mrivests scatteropts(opts) options passed to the scatter command xlrange(# #) the range for the IVW and MR-Egger lines, see twoway_function range() option * other options passed to twoway
Description
mrfunnel provides a funnel plot for a two-sample Mendelian randomization analysis.
There are 3 choices of measures of instrument strength to plot on the y-axis, which are specified using the metric option and are described below. On the plot the MR-Egger estimate is the line with the longer dashes, the IVW estimate is shown with the shorter dashes.
varname_gd is a variable containing the genotype-disease (SNP-outcome) association estimates.
varname_gdse is a variable containing the genotype-disease (SNP-outcome) association estimate standard errors.
varname_gp is a variable containing the genotype-phenotype (SNP-exposure) association estimates.
varname_gpse is a variable containing the genotype-phenotype (SNP-exposure) association estimate standard errors.
Options
metric(gpbeta|gpbetastd|invse) specifies the metric for the y-axis. Can be one of: - gpbeta: the absolute value of the genotype-phenotype (SNP-exposure) estimates, - gpbetastd: gpbeta standardised by the genotype-disease (SNP-outcome) standard errors (the default), - invse: the inverse of the standard errors on the genotype specific IV ratio estimates.
Note that in Stata 18.0 the default legend position of a twoway plot was changed from the 6 o'clock position to the 3 o'clock position. In Stata 18.0 and above mrfunnel resets the default back to 6 o'clock (which can be overridden with, for example, legend(pos(12))).
Examples
Using the data provided by Do et al. (2013) recreate Bowden et al. (2016) Web Figure A2 (top-right plot, LDL-C with 73 genotypes).
Setup . use https://raw.github.com/remlapmot/mrrobust/master/dodata, clear
Select observations (p-value with exposure < 10^-8) . gen byte sel1 = (ldlcp2 < 1e-8)
Funnel plot . mrfunnel chdbeta chdse ldlcbeta ldlcse if sel1==1
Without adding the IVW and MR-Egger estimates . mrfunnel chdbeta chdse ldlcbeta ldlcse if sel1==1, noivw nomregger
Using an unstandardised y-axis . mrfunnel chdbeta chdse ldlcbeta ldlcse if sel1==1, metric(gpbeta)
Using inverse IV SEs on the y-axis . mrfunnel chdbeta chdse ldlcbeta ldlcse if sel1==1, metric(invse)
Remove the legend . mrfunnel chdbeta chdse ldlcbeta ldlcse if sel1==1, legend(off)
Extend the IVW and MR-Egger lines to the y-axis limits (as per the original version of this command) . mrfunnel chdbeta chdse ldlcbeta ldlcse if sel1==1, xlrange(0 10)
References
Do et al., 2013. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nature Genetics. 45, 1345-1352. DOI
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology, 2016, 40, 4, 304-314. DOI
Author
INCLUDE help mrrobust-author