Function providing several methods to estimate the multiplicative structural mean model (MSMM) of Robins (1989).
Usage
msmm(
formula,
instruments,
data,
subset,
na.action,
contrasts = NULL,
estmethod = c("gmm", "gmmalt", "tsls", "tslsalt"),
t0 = NULL,
...
)
Arguments
- formula, instruments
formula specification(s) of the regression relationship and the instruments. Either
instruments
is missing andformula
has three parts as iny ~ x1 + x2 | z1 + z2 + z3
(recommended) orformula
isy ~ x1 + x2
andinstruments
is a one-sided formula~ z1 + z2 + z3
(only for backward compatibility).- data
an optional data frame containing the variables in the model. By default the variables are taken from the environment of the
formula
.- subset
an optional vector specifying a subset of observations to be used in fitting the model.
- na.action
a function that indicates what should happen when the data contain
NA
s. The default is set by thena.action
option.- contrasts
an optional list. See the
contrasts.arg
ofstats::model.matrix()
.- estmethod
Estimation method, please use one of
"gmm"
GMM estimation of the MSMM (the default)."gmmalt"
GMM estimation of the alternative moment conditions for the MSMM as per Clarke et al. (2015). These are the same moment conditions fit by the user-written Stata commandivpois
(Nichols, 2007) and by the official Stata commandivpoisson gmm ..., multiplicative
(StataCorp., 2013)."tsls"
the TSLS method of fitting the MSMM of Clarke et al. (2015). For binary \(Y\) and \(X\) this uses \(Y*(1-X)\) as the outcome and \(Y*X\) as the exposure."tslsalt"
the alternative TSLS method of fitting the MSMM of Clarke et al. (2015). For binary \(Y\) and \(X\) this uses \(Y*X\) as the outcome and \(Y*(1-X)\) as the exposure.
- t0
A vector of starting values for the gmm optimizer. This should have length equal to the number of exposures plus 1.
- ...
further arguments passed to or from other methods.
Value
An object of class "msmm"
. A list with the following items:
- fit
The object from either a
gmm::gmm()
orivreg::ivreg()
fit.- crrci
The causal risk ratio/s and it corresponding 95% confidence interval limits.
- estmethod
The specified
estmethod
.
If estmethod
is "tsls"
, "gmm"
, or "gmmalt"
:
- ey0ci
The estimate of the treatment/exposure free potential outcome and its 95% confidence interval limits.
If estmethod
is "tsls"
or "tslsalt"
:
- stage1
An object containing the first stage regression from an
stats::lm()
fit.
Details
Function providing several methods to estimate the multiplicative structural mean model (MSMM) of Robins (1989). These are the methods described in Clarke et al. (2015), most notably generalised method of moments (GMM) estimation of the MSMM.
An equivalent estimator to the MSMM was proposed in Econometrics by Mullahy (1997) and
then discussed in several articles by Windmeijer (1997, 2002) and Cameron
and Trivedi (2013). This was implemented in the user-written Stata command ivpois
(Nichols, 2007) and then implemented in official Stata in the ivpoisson
command (StataCorp., 2013).
References
Cameron AC, Trivedi PK. Regression analysis of count data. 2nd ed. 2013. New York, Cambridge University Press. ISBN:1107667275
Clarke PS, Palmer TM, Windmeijer F. Estimating structural mean models with multiple instrumental variables using the Generalised Method of Moments. Statistical Science, 2015, 30, 1, 96-117. doi:10.1214/14-STS503
Hernán and Robins. Instruments for causal inference: An Epidemiologist's dream? Epidemiology, 2006, 17, 360-372. doi:10.1097/01.ede.0000222409.00878.37
Mullahy J. Instrumental-variable estimation of count data models: applications to models of cigarette smoking and behavior. The Review of Economics and Statistics. 1997, 79, 4, 586-593. doi:10.1162/003465397557169
Nichols A. ivpois: Stata module for IV/GMM Poisson regression. 2007. url
Palmer TM, Sterne JAC, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Davey Smith G, Didelez V. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. American Journal of Epidemiology, 2011, 173, 12, 1392-1403. doi:10.1093/aje/kwr026
Robins JM. The analysis of randomised and nonrandomised AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Mulley, eds.). 1989. 113–159. US Public Health Service, National Center for Health Services Research, Washington, DC.
StataCorp. Stata Base Reference Manual. Release 13. ivpoisson - Poisson model with continuous endogenous covariates. 2013. url
Windmeijer FAG, Santos Silva JMC. Endogeneity in Count Data Models: An Application to Demand for Health Care. Journal of Applied Econometrics. 1997, 12, 3, 281-294. doi:10/fdkh4n
Windmeijer, F. ExpEnd, A Gauss programme for non-linear GMM estimation of EXPonential models with ENDogenous regressors for cross section and panel data. CEMMAP working paper CWP14/02. 2002. url
Examples
# Single instrument example
# Data generation from the example in the ivtools ivglm() helpfile
set.seed(9)
n <- 1000
psi0 <- 0.5
Z <- rbinom(n, 1, 0.5)
X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z))
m0 <- plogis(1 + 0.8*X - 0.39*Z)
Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0))))
dat <- data.frame(Z, X, Y)
fit <- msmm(Y ~ X | Z, data = dat)
summary(fit)
#>
#> Estimation method: gmm
#>
#> GMM fit summary:
#>
#> Call:
#> gmm::gmm(g = msmmMoments, x = dat, t0 = t0, vcov = "iid")
#>
#>
#> Method: twoStep
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Theta[1] 7.2784e-01 2.5893e-02 2.8110e+01 7.4591e-174
#> Theta[2] 1.3107e-01 6.0307e-02 2.1733e+00 2.9754e-02
#>
#> J-Test: degrees of freedom is 0
#> J-test P-value
#> Test E(g)=0: 1.73561467137432e-06 *******
#>
#> #############
#> Information related to the numerical optimization
#> Convergence code = 0
#> Function eval. = 63
#> Gradian eval. = NA
#>
#> E[Y(0)] with 95% CI:
#> 0.025 0.975
#> 0.7278 0.6771 0.7786
#>
#> Causal risk ratio with 95% CI:
#> CRR 0.025 0.975
#> X 1.14 1.013 1.283
#>
# Multiple instrument example
set.seed(123456)
n <- 1000
psi0 <- 0.5
G1 <- rbinom(n, 2, 0.5)
G2 <- rbinom(n, 2, 0.3)
G3 <- rbinom(n, 2, 0.4)
U <- runif(n)
pX <- plogis(0.7*G1 + G2 - G3 + U)
X <- rbinom(n, 1, pX)
pY <- plogis(-2 + psi0*X + U)
Y <- rbinom(n, 1, pY)
dat2 <- data.frame(G1, G2, G3, X, Y)
fit2 <- msmm(Y ~ X | G1 + G2 + G3, data = dat2)
summary(fit2)
#>
#> Estimation method: gmm
#>
#> GMM fit summary:
#>
#> Call:
#> gmm::gmm(g = msmmMoments, x = dat, t0 = t0, vcov = "iid")
#>
#>
#> Method: twoStep
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Theta[1] 0.18250038 0.05196181 3.51220233 0.00044441
#> Theta[2] 0.45163610 0.41838256 1.07948119 0.28037327
#>
#> J-Test: degrees of freedom is 2
#> J-test P-value
#> Test E(g)=0: 0.27121 0.87319
#>
#> Initial values of the coefficients
#> Theta[1] Theta[2]
#> 0.1831035 0.4392681
#>
#> #############
#> Information related to the numerical optimization
#> Convergence code = 0
#> Function eval. = 59
#> Gradian eval. = NA
#>
#> E[Y(0)] with 95% CI:
#> 0.025 0.975
#> 0.18250 0.08066 0.28434
#>
#> Causal risk ratio with 95% CI:
#> CRR 0.025 0.975
#> X 1.571 0.6919 3.567
#>